Terroir 2004 banner
IVES 9 IVES Conference Series 9 Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

Abstract

[English version below]

L’objectif de l’étude était de connaître le rôle du climat sur les aspects phénologiques du cépage « Moscato bianco » dans les différentes zones de production du vin Moscato d’Asti aocg en Piemonte (Italie) et ses effets sur l’époque de vendange. La représentation cartographique ( échelle 1 :25000) de exposition, altitude, climat, index bioclimatiques, phases phénologiques, caractéristiques physique- chimiques des raisins ( alcool, acidité, pH) a permit de partager la zone de production de Moscato d’Asti en trois sub-zones avec différentes époques de vendange où, entre une précoce et une tardive il y a une sub-zone intermédiaire caractérisée par situations de majeur et mineur précocité .

The study’s purpose was to realize the role of climate on phenological aspects of ‘Moscato bianco’ grapevine cultivar in different production zones of wine Moscato d’Asti docg in Piemonte (Italy) and his effects on vintage time. The cartography display (scale 1:25.000) of different parameters of exposure, altitude, climate, bioclimatic indexes, phenological phases, grape’s quality (alcohol, acidity, pH) allows to zone the Moscato d’Asti production area in three sub-zones: between an early zone and late zone there is a intermediate zone with more or less earliness.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. Schubert (1), C. Lovisolo (1), M. Mancini (2), S. Orlandini (3), M. Moriondo (3), F. Spanna (6), S. Dolzan (6), M. De Marziis (4), D. Della Valle (5), M. Gily (5), G. Sanlorenzo (5), A. Cellino (6)

(1) Dipartimento Colture Arboree – Università Degli Studi di Torino – Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(2) Centro Studi per l’applicazione dell’informatica in agricoltura – Accademia dei Georgofili – Logge Uffizi Corti –50122 FIRENZE
(3) Dipartimento di Scienze agronomiche e Gestione del territorio agroforestale – Piazzale delle cascine,18 – Università degli Studi – 50144 FIRENZE

Contact the author

; ; ; ; ; ;

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Yield prediction assessment before bloom and at veraison in a cv. Airén high yielding vineyard in Toledo (La Mancha, Spain)

Anticipation in the possible responses of grapevines to environmental variations is key to adjust field work in view of a more effective management. This idea has been the driving force behind the current work, which seeks to understand the interaction patterns of the vine with its habitat throughout the growing cycle.

Spatial variability of temperature is linked to grape composition variability in the Saint-Emilion winegrowing area

Elevated temperature during the grape maturation period is a major threat for grape quality and thus wine quality. Therefore, characterizing the grape composition response to temperature at a larger scale would represent a crucial step towards adaptation to climate change. In response to changes in temperature, various physiological mechanisms regulate grape composition. Primary and secondary metabolisms are both involved in this response, with well-known effects, for example on anthocyanins, and lesser known effects, for example on aromas or aroma precursors. At the field scale or at the regional scale, however, numerous environmental or plant-specific factors intervene to make the effects of temperature difficult to distinguish from overall variability. In this study, it was attempted to overcome this difficulty by selecting well-characterized situations with differing temperatures.
A long-term study of air temperature variability across several Merlot vineyards in the Saint-Emilion and Pomerol wine producing area found significant temperature differences and gradients at various time scales linked to environmental factors. From this study area, a few sites were selected with similar age, soil and training system conditions, and with repeated and contrasted temperature differences during the maturation period. The average temperature difference during the maturation period was about 2°C between cooler and warmer sites, a difference similar to that expected under future climate change scenarios. In close vicinity to the temperature sensors at each site, grape berries were sampled at different times until full maturity during 2019 and 2020. Also, berries from bunches on either side of the row were analyzed separately, allowing an investigation of bunch exposure effect associated with the coupling of berry temperature and solar radiation. Four replicates of pooled berries for each time – site – bunch exposure combination were obtained and analyzed for biochemical composition. Analyses of variance of the biochemical composition data collected at different sampling times reveal significant effects associated with temperature, site, and bunch azimuth. For instance, anthocyanins in grape skins are clearly influenced by temperature and solar radiation exposure, with up to 30% reduction in warmer conditions.

Two dimensions, one mission: unlocking grape composition by GC × GC

Aroma is one of the most important attributes that determine consumer’s perception of the sensory quality of wine and varietal typicity.

Evaluating Smoke Contaminants in Wine Using 13C-Labelled Barley as a Fuel Source

Wildfires are becoming more common in many areas of the world that are also associated with wine grape production, especially the Pacific northwest United States, Australia and even some areas of France.

Grapevine rootstock field evaluation under drought and saline condition in California

Climate change impacts grape production worldwide and in California drought and salinity became increasingly challenging for grape growers to maintain sustainable production and fruit quality.