Terroir 2004 banner
IVES 9 IVES Conference Series 9 Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

Role of climate on grape characteristics of “Moscato bianco” in Piemonte (Italy)

Abstract

[English version below]

L’objectif de l’étude était de connaître le rôle du climat sur les aspects phénologiques du cépage « Moscato bianco » dans les différentes zones de production du vin Moscato d’Asti aocg en Piemonte (Italie) et ses effets sur l’époque de vendange. La représentation cartographique ( échelle 1 :25000) de exposition, altitude, climat, index bioclimatiques, phases phénologiques, caractéristiques physique- chimiques des raisins ( alcool, acidité, pH) a permit de partager la zone de production de Moscato d’Asti en trois sub-zones avec différentes époques de vendange où, entre une précoce et une tardive il y a une sub-zone intermédiaire caractérisée par situations de majeur et mineur précocité .

The study’s purpose was to realize the role of climate on phenological aspects of ‘Moscato bianco’ grapevine cultivar in different production zones of wine Moscato d’Asti docg in Piemonte (Italy) and his effects on vintage time. The cartography display (scale 1:25.000) of different parameters of exposure, altitude, climate, bioclimatic indexes, phenological phases, grape’s quality (alcohol, acidity, pH) allows to zone the Moscato d’Asti production area in three sub-zones: between an early zone and late zone there is a intermediate zone with more or less earliness.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. Schubert (1), C. Lovisolo (1), M. Mancini (2), S. Orlandini (3), M. Moriondo (3), F. Spanna (6), S. Dolzan (6), M. De Marziis (4), D. Della Valle (5), M. Gily (5), G. Sanlorenzo (5), A. Cellino (6)

(1) Dipartimento Colture Arboree – Università Degli Studi di Torino – Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(2) Centro Studi per l’applicazione dell’informatica in agricoltura – Accademia dei Georgofili – Logge Uffizi Corti –50122 FIRENZE
(3) Dipartimento di Scienze agronomiche e Gestione del territorio agroforestale – Piazzale delle cascine,18 – Università degli Studi – 50144 FIRENZE

Contact the author

; ; ; ; ; ;

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Addition of glutathione-rich inactivated yeasts to white musts: effects on wine composition and sensory quality

Glutathione plays a key role in preventing some oxidative processes during winemaking. This molecule limits the must enzymatic oxidation, reacts with caffeic acid and generates a colourless compound that prevents subsequent browning. It also has a protective effect on wine aroma, preventing the oxidation of the volatile compounds with a high sensory impact.

Development of novel drought-tolerant grape cultivars from Monastrell: enhancing anthocyanin and flavonol content under elevated temperatures

The ongoing challenge of climate change is driving the need for novel oenological approaches aimed at finding effective environmental solutions.

Consumer perception and preferences regarding grape varieties resilient to climate change

Innovative solutions have been developed for winemakers to adopt in their cultivation practices [1]. Two of the implementations addressed in this study are the use of strains adapted to arid climates (AAC) and the use of varieties resistant to fungal diseases (PIWIs).

BIOSORPTION OF UNDESIRABLE COMPONENTS FROM WINE BY YEAST-DERIVED PRODUCTS

4-Ethylphenol (EP) in wine is associated with organoleptic defects such as barn and horse sweat odors. The origin of EP is the bioconversion reaction of p-coumaric acid (CA), naturally present in grapes and grape musts by contaminating yeasts of the genus Brettanomyces bruxellensis.
Yeast cell walls (YCW) have shown adsorption capacities for different compounds. They could be applied to wines in order to adsorb either CA and/or EP and thus reduce the organoleptic defects caused by the contaminating yeasts.

PIWIs’ variation in drought response under semi-controlled conditions 

Grapevine interspecific hybrids (PIWIs, from German “pilzwiderstandsfähige Rebsorten” meaning fungus tolerant grapevine cultivars), offer a promising alternative to traditional cultivars in many wine regions due to their tolerance to certain fungal diseases. This makes them a potential solution for sustainable wine production, particularly under organic systems. Despite extensive research on certain agronomic traits and susceptibility to biotic diseases, such as powdery and downy mildews, the response of these cultivars to abiotic stressors, such as drought, remains unclear. Our study aims to investigate the eco-physiological traits of two commercial PIWI cultivars, Muscaris and Souvignier gris, at the leaf level to evaluate their response to drought stress.