Terroir 2004 banner
IVES 9 IVES Conference Series 9 Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Abstract

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg. Ability to fix applied K also varied, decreasing from 0.350 in the shale-, to 0.188 in the sandstone- to -0.177 cmol/kg in the granite-derived soils. Potential buffering capacity for K was pH / liming dependent, particularly in the shale soils. Potassium uptake by Italian rye grass correlated negatively with K fixation. The K contents of Italian rye grass grown on the sandstone, shale and granite soils were, respectively, 2.32, 2.12 and 5.56 dry mass %. These results were explicable in terms of soil mineralogy. The presence of kaolinite in the clay fraction, with mica and K-rich feldspar cores in the silt fraction enabled the granite soils to release primary K, but conferred little power to fix, or to buffer K against luxury uptake or loss through leaching. In contrast, the shale soil clay fractions consistently contained vermiculite and interstratified 2:1 minerals. These conferred marked pH / liming dependent K buffer capabilities. The shale soils also contained K in micas in the non-clay fractions. The sandstone soils varied in terms of both mineralogy and clay content. Sandstone soils, in which the sand fractions were quartzitic were unable to deliver primary K. Similarly, sandstone soils having low clay contents had severely limited K buffering capabilities. The observed differences in the abilities of sandstone-, shale- and granite-derived soils to supply and buffer K may be sufficient to affect grape vine performance and wine quality in Western Cape vineyards.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Clay, buffer capacity, granite, mineral, potassium, sandstone, shale, soil, vineyard, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Grape seed powder as an alternative to bentonite for wine fining

PR proteins can cause haze in wines, and the risk is to keep the wine unsold. Generally, in winemaking bentonite solves this problem by removing proteins, but it is not a renewable resource, has poor settling, which means difficulty in filtering after use and a considerable loss of wine, it is not a specific adsorbent and may reduce aromas and flavor compounds

Soil or geology? And what’s the difference? Some observations from the New World

Observational historical geology seeks to establish the evolutionary history of the surface of Earth. This approach is applicable not only to bedrock, but to the soft material that lies at the surface, the stuff called soil by most people. The geologic perspective provides a view of this material that is quite different from that of soil science, at least as practiced by many in America.

Towards a better understanding of the root system diversity and plasticityin young grafted vines using 2D imaging and 3D modelling tools

Three-dimensional functional-structural root architecture models, which decompose the root system architecture (RSA) into elementary developmental processes such as root emission, axial growth, branching patterns and tropism have become useful tools for (i) reconstructing in silico the spatial and temporal dynamics of root systems in a soil volume, (ii) analyzing their genotypic diversity and plasticity to the environment, and (iii) overcoming the bottleneck associated with their visualization and measurement in situ. Here, we present an original work on RSA phenotyping and modelling in grapevine. First, we developed 2D image-based analysis pipelines to quantify morphological and architectural traits in young grafts. Second, we parametrized and validated the 3D root model Archisimple on two rootstock genotypes (RGM, 1103P) grafted with V. vinifera Cabernet-Sauvignon and grown in different controlled conditions (rhizotrons, pots, tubes).

Effect of Saccharomyces species interaction on alcoholic fermentation behaviour and aromatic profile of Sauvignon blanc wine

Enhancing the sensory profile of wine by the use of different microorganism has been always a challenge in winemaking. The aim of our work was to evaluate the impact of different fermentation schemes by using mixed and pure cultures of different Saccharomyces species to Sauvignon blanc wine chemical composition and sensory profile.

NACs intra-family hierarchical transcriptional regulatory network orchestrating grape berry ripening

Considering that global warming is changing berry ripening timing and progression, uncovering the molecular mechanisms and identifying key regulators governing berry ripening could provide important tools in maintaining high quality grapes and wine. NAC (NAM/ATAF/CUC) transcription factors represent an interesting family due to their key role in the developmental processes control, such as fruit-ripening-associated genes expression, and in the regulation of multiple stress responses. Between the 74 NAC family members, we selected 12 of them as putative regulators of berry ripening: NAC01, NAC03, NAC05, NAC11, NAC13, NAC17, NAC18, NAC26, NAC33, NAC37, NAC60 and NAC61.