Terroir 2004 banner
IVES 9 IVES Conference Series 9 Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Abstract

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg. Ability to fix applied K also varied, decreasing from 0.350 in the shale-, to 0.188 in the sandstone- to -0.177 cmol/kg in the granite-derived soils. Potential buffering capacity for K was pH / liming dependent, particularly in the shale soils. Potassium uptake by Italian rye grass correlated negatively with K fixation. The K contents of Italian rye grass grown on the sandstone, shale and granite soils were, respectively, 2.32, 2.12 and 5.56 dry mass %. These results were explicable in terms of soil mineralogy. The presence of kaolinite in the clay fraction, with mica and K-rich feldspar cores in the silt fraction enabled the granite soils to release primary K, but conferred little power to fix, or to buffer K against luxury uptake or loss through leaching. In contrast, the shale soil clay fractions consistently contained vermiculite and interstratified 2:1 minerals. These conferred marked pH / liming dependent K buffer capabilities. The shale soils also contained K in micas in the non-clay fractions. The sandstone soils varied in terms of both mineralogy and clay content. Sandstone soils, in which the sand fractions were quartzitic were unable to deliver primary K. Similarly, sandstone soils having low clay contents had severely limited K buffering capabilities. The observed differences in the abilities of sandstone-, shale- and granite-derived soils to supply and buffer K may be sufficient to affect grape vine performance and wine quality in Western Cape vineyards.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Clay, buffer capacity, granite, mineral, potassium, sandstone, shale, soil, vineyard, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Development and validation of a standardized oxidation assay for the accurate measurement of the ability of different wines to form “de novo” oxidation-related aldehydes

From the standpoint of wine aroma oxidation there are two effects observed: aroma degradation of oxygen sensitive compounds (polyfunctional mercaptans) and the appearance of new substances with high aromatic power (acetaldehyde, methional, phenylacetaldehyde, sotolon, alkenals, isobutanal and 2, 3-metylbutanals) (1-5). According to our experience, Strecker aldehydes are compounds with highest sensory relevance in the oxidative degradation of many wines (5-7).

Towards an ecological architecture inspired by underground cellars: An example of the thermal inertia of Moldovan underground cellars and new geothermal and Canadian well approaches

The search for underground shelters is one of the oldest forms of human habitation, providing refuge in extreme environments such as deserts and polar regions.

Impact of mycorrhizal inoculation of ‘Monastrell’ grapevines grafted onto different conventional vs. newly breed rootstocks 

Grafting Vitis vinifera L. (wine traditional cultivars) onto North American grapevine species or hybrids is a common practice in viticulture given their tolerance against phylloxera (Daktulosphaira vitifoliae). However, rootstock genetic background affects the response of grapevines to environmental stresses and their ability for establishing a symbiotic relationship with the microbial communities, and more specifically with arbuscular mycorrhizal fungi (AMF).
The aim of this study was to evaluate Monastrell variety (clone ENTAV 369) grafted onto three rootstocks (140Ru, 110R and RG8) characterized by a different genetic background, in combination with AMF inoculation (Rhizophagus irregularis) vs. a non-inoculated control with regards to vegetative growth, leaf gas exchange parameters, and mycorrhization.

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Applicability of spectrofluorometry and voltammetry in combination with machine learning approaches for authentication of DOCa Rioja Tempranillo wines

The main objective of the work was to develop a simple, robust and selective analytical tool that allows predicting the authenticity of Tempranillo wines from DOCa Rioja. The techniques of voltammetry and absorbance-transmission and fluorescence excitation emission matrix (A-TEEM) spectroscopy have been applied in combination with machine learning (ML) algorithms to classify red wines from DOCa Rioja according to region (Alavesa, Alta or Oriental) and category (young, crianza or reserva).