Terroir 2004 banner
IVES 9 IVES Conference Series 9 Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Soil clay mineralogy and potassium buffer capacity as potential wine quality determining factors in Western Cape vineyards

Abstract

The potassium (K) supply characteristics and clay mineralogies of a population of Western Cape soils were investigated to determine their potential effects on vine K uptake and wine quality. The total K contents of granite-, shale- and sandstone-derived soils varied, averaging 33.7, 26.1 and 4.5 cmol(+)/kg, respectively. Corresponding M NH4Cl exchangeable soil K levels were: 0.172, 0.042 and 0.035 cmol/kg. Ability to fix applied K also varied, decreasing from 0.350 in the shale-, to 0.188 in the sandstone- to -0.177 cmol/kg in the granite-derived soils. Potential buffering capacity for K was pH / liming dependent, particularly in the shale soils. Potassium uptake by Italian rye grass correlated negatively with K fixation. The K contents of Italian rye grass grown on the sandstone, shale and granite soils were, respectively, 2.32, 2.12 and 5.56 dry mass %. These results were explicable in terms of soil mineralogy. The presence of kaolinite in the clay fraction, with mica and K-rich feldspar cores in the silt fraction enabled the granite soils to release primary K, but conferred little power to fix, or to buffer K against luxury uptake or loss through leaching. In contrast, the shale soil clay fractions consistently contained vermiculite and interstratified 2:1 minerals. These conferred marked pH / liming dependent K buffer capabilities. The shale soils also contained K in micas in the non-clay fractions. The sandstone soils varied in terms of both mineralogy and clay content. Sandstone soils, in which the sand fractions were quartzitic were unable to deliver primary K. Similarly, sandstone soils having low clay contents had severely limited K buffering capabilities. The observed differences in the abilities of sandstone-, shale- and granite-derived soils to supply and buffer K may be sufficient to affect grape vine performance and wine quality in Western Cape vineyards.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J. Wooldridge

ARC Infruitec-Nietvoorbij, Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Keywords

Clay, buffer capacity, granite, mineral, potassium, sandstone, shale, soil, vineyard, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Exploring the regulatory role of the grapevine MIXTA homologue in cuticle formation and abiotic stress resilience

The outer waxy layer of plant aerial structures, known as the cuticle, represents an important trait that can be targeted to increase plant tolerance against abiotic stresses exacerbated by environmental transition. The MIXTA transcription factor, member of the R2R3-MYB family, is known to affect conical shape of petal epidermal cells in Anthirrinum, cuticular thickness in tomato fruit and trichome formation and morphology in several crops. The aim of this study was to investigate the role of the grapevine MIXTA homologue by phenotypic and molecular characterization of overexpressing and knock-out grapevine lines.

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Limiting magnesium availability: a novel approach to managing brettanomyces spoilage in winemaking

Brettanomyces is a world-renowned yeast that negatively impacts the chemical composition of wines through the production of metabolites that negatively impact the sensory properties of the final product. Its resilience in wine conditions and ability to produce off-flavors make it a challenge for winemakers. Currently, the primary control technique involves adding sulfur dioxide (SO2); however, some Brettanomyces strains are developing resistance to this preservative agent. [1] Therefore, new management strategies are necessary to control this spoilage yeast.

Impact of heating must before fermentation on Chardonnay wines

Prefermentation steps of white winemaking are very important for controlling the stability and the sensory attributes of wines. Usually musts are clarified by cold settling to prevent the start of the fermentation, before racking big lees and thus limiting the appearance of vegetable or reduction off flavour while favouring an aromatic expression with low turbidity. Besides, to reach the protein stability, some white wines further require a bentonite fining, sometimes associated with negative effects on the sensory quality. This study aims to know the impact of musts heating after pressing on a Chardonnay wine in northern conditions by comparison with a classic cold racking of the must.

Cépage “Baga” région Bairrada. 2- De la conduite traditionnelle jusqu’au système ‘Lys’

Dans la Région de la Bairrada (Litoral-Centre du Portugal), on a étudié au 1999, l’influence des différents systèmes de conduite sur le cépage rouge “Baga”, le plus important de la Région.