WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Aroma compounds involved in the fruity notes of red wines potentially adapted to climate change.

Abstract

Currently, climate change represents one of the major issues for the wine sector. The increasing temperature already recorded and expected in the upcoming years reduce the vegetative cycle of the grape varieties planted in Bordeaux area, affecting the physicochemical parameters of grapes and consequently, the quality of wine. From a sensory point of view, the attenuation of the fresh fruity character in some varietals is accompanied by the accentuation of dried-fruit notes [1]. As a new adaptive and ecological strategy on global warming, some winegrowers have initiated changes in the Bordeaux blend of vine varieties using late-ripening grape varieties [2]. 

This study intends to explore the fruitiness in wines produced from grape varieties adapted to the future climate of Bordeaux. 10 commercial single–varietal wines from 2018 vintage made from the main grape varieties in the Bordeaux region (Cabernet franc, Cabernet-Sauvignon and Merlot) as well as from indigenous grape varieties from the Mediterranean basin, such as Cyprus (Yiannoudin), France (Syrah), Greece (Agiorgitiko and Xinomavro), Portugal (Touriga Nacional) and Spain (Garnacha and Tempranillo), were selected among 19 samples using sensory descriptive analyses. 

Both sensory and instrumental analyses were coupled, to investigate their fruity aroma expression. For sensory analysis, samples were prepared from wine, using a semi preparative HPLC method which preserves wine aroma and isolates fruity characteristics in 25 specific fractions [3,4]. Fractions of interest with intense fruity aromas were sensorially selected for each wine by a trained panel and mixed with ethanol and microfiltered water to obtain fruity aromatic reconstitutions (FAR) [5]. A free sorting task was applied to categorize FAR according to their similarities or dissimilarities, and different clusters were highlighted. Instrumental analysis of the different FAR and wines demonstrated variations in their molecular composition. 

Results obtained from sensory and gas chromatography analysis enrich the knowledge of the fruity expression of red wines from “new” grape varieties opening up new perspectives in wine technology, including blending, thus providing new tools for producers.

References

[1] Pons, A. et al. (2017)
[2] Van Leeuwen, C. et al. (2019)
[3] Ferreira, V. et al. (1999)
[4] Pineau, B. (2007)
[5] Lytra, G. (2012)

DOI:

Publication date: June 13, 2022

Issue: WAC 2022

Type: Article

Authors

Justine Garbay, Margaux Cameleyre, Nicolas Le Menn, Jean-Christophe Barbe , Georgia Lytra

Presenting author

Justine Garbay – PhD student in Oenology – Institut des Sciences de la Vigne et du Vin

Institut des Sciences de la Vigne et du Vin | Institut des Sciences de la Vigne et du Vin | Institut des Sciences de la Vigne et du Vin | Institut des Sciences de la Vigne et du Vin 

Contact the author

Keywords

aromatic compounds – climate change – fruity notes – late-ripening varieties – red wine

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Influence of pedoclimatic factors during berry ripening in Burgundy

Berry composition at ripeness can be explained by many factors. This study was carried out from 2004 through 2011 in a 60 block network in the Yonne region, Burgundy.

Characterization of 25 white grape varieties from the variety collection of ICVV (D.O.Ca.Rioja, Spain)

The effects of climate change produce an increase in sugar concentration and a decrease in acidity, without reaching the optimum grape phenolic maturity [1]. The aim of this work was to characterize 25 white grape varieties

Analysis of Cabernet Sauvignon and Aglianico winegrape (V. vinifera L.) responses to different pedo-climatic environments in southern Italy

Water deficit is one of the most important effects of climate change able to affect agricultural sectors. In general, it determines a reduction in biomass production, and for some plants, as in the case of grapevine, it can endorse fruit quality. The monitoring and management of plant water stress in the vineyard

Monitoring of Pesticide Residues from Vine to Wine

Those previous years, pesticides are often brought to the forefront by media. Questions arose about their toxicity for growers and consumers. Even if a downward trend is underway, the use of pesticides is required to ensure steady quality and quantity of harvests. A large number of active ingredients are authorized but regarding viticulture, mainly insecticides and fungicides are applied, to control pests and diseases and to increase crop yield. Some phytosanitary products, principally fungicides, applied close to the harvest date may frequently be detected in wines.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.