Terroir 2004 banner
IVES 9 IVES Conference Series 9 The use of remote sensing for intra-block vineyard management

The use of remote sensing for intra-block vineyard management

Abstract

[English version below]

L’unité de gestion technique d’un vignoble est aujourd’hui la parcelle. Néanmoins, au sein d’une même parcelle, la variabilité de l’expression végétative et de la constitution des raisins à maturité, peut être grande, en particulier à cause d’une hétérogénéité du sol. Dans une parcelle expérimentale, la surface foliaire a été deux fois plus élevée sur les placettes de forte vigueur par rapport à celles de faible vigueur. Le taux de sucres des baies a varié de 205 à 235 g/ L. Cette variabilité devrait être prise en compte dans une gestion optimale du vignoble. Des images ont été obtenues par la télédétection à haute résolution, dont les pixels représentent 100 à 200 cm2 de surface au sol. Des pixels contenant seulement de l’information du feuillage ont alors pu être isolés de l’image. A partir des données spectrales contenues dans ces photos, un indice de végétation appelé « NDVI » (Normalized Difference Vegetation Index) peut être construit pour caractériser la vigueur de la vigne. Des zones de vigueur variable ont été identifiées au sein d’une parcelle. La similitude entre les cartes du NDVI et des variables d’expression de la vigueur, démontre la faisabilité de cartographier la vigueur à l’aide du NDVI obtenu par télédétection haute résolution, et ainsi permettre d’expliquer les variations de certains paramètres qualitatifs de la vendange qui en découlent.

In vineyard management, the technical work unit is now the block. However, considerable variability can exist inside a block with regard to vegetative growth and fruit composition at ripeness, because of soil heterogeneity. In this research, vine characteristics were measured on 96 plots of a block of 0,3 ha. Leaf area was two times greater on the plots with the highest vigour compared to the leaf area on the plots with the lowest vigour. Berry sugar content varied from 205 to 235 g/L. Optimised vineyard management should take in account this variability. Variations in soil (depth, texture) can be surveyed by soil sampling and mapped. They can also be assessed more rapidly and more precisely by geophysics, a technique based on variations in soil resistance to electric current. Vine behaviour can be measured by means of physiological indicators: N-tester for vine nitrogen status, leaf water potential and carbon isotope discrimination (δ13C) for vine water status. To represent spatial variability of physiological parameters, repeated measurements are necessary on a great number of plots inside a block, making this approach very time and money consuming. Remote sensing can be considered as an interesting alternative way to map intra-block heterogeneity. In satellite pictures, one pixel represents more than one square meter on the soil. Because a vine row rarely exceeds 60 cm in width, these pixels contain both information from the vine canopy and from the soil, making them difficult to interpret. In high resolution remote sensing, pictures are taken at an altitude of approximately 300 meters. Pixels represent 100 to 200 square centimeters on the soil. Pixels containing only information from the canopy can thus be extracted from the picture. On these photographs, vine vigour can be characterised by transforming spectral data from the canopy into a vegetation index, for instance “NDVI” (Normalized Difference Vegetation Index). This approach was used in this study. Zones of variable vine vigour were identified inside a block. The high correlation between NDVI and vigour parameters demonstrates the possibility to map the vigour with the NDVI by means of high resolution remote sensing, and consequently to explain the variations of linked quality factors.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

E. Marguerit (1), J.-P. Goutouly (2), C. Azais (1), S. Merino (1), J.-P. Roby (1), C. Van Leeuwen (1)

(1) ENITA de Bordeaux-UMR Œnologie Ampélologie, 1 Crs du Général de Gaulle, BP 201, 33 175 Gradignan-cedex, France
(2) INRA-UMR Œnologie Ampélologie, ECAV, 71, av. Edouard-Bourlaux, BP 81, 33 883 Villenave d’Ornon Cedex

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Mouthfeel effects due to oligosaccharides within a wine matrix

The mouthfeel of wine is one of the most important aspects of the organoleptic experience of tasting wine. In wine a great deal is known about certain compositional components and how they impact mouthfeel perception, such as phenolics. But there are other components where little is understood, such as oligosaccharides. Saccharides in general are found in very low concentrations with wine, especially compared to conventional foods. There is very little information about how oligosaccharides influence the mouthfeel perception of wine.

Brown Marmorated Stink Bug taint in grape must and wine: time evolution of trans-2-decenal

The brown marmorated stink bug (BMSB, Halyomorpha halys Stal) is an invasive pentatomid native to eastern Asia that is spreading rapidly worldwide, notably through human-mediated activities. Globally, it was reported in the USA, Canada, Italy, Hungary, and other European countries. BMSB has a broad host range that includes over 170 plants, many of agricultural importance, including various fruit, vegetables, row crops, and ornamentals. When present in the vineyard, the pest can affect yield and quality by directly feeding on berries resulting in fruit collapse and necrosis. Additional damage occurs when BMSB are carried into the winery within the grape clusters. The presence of BMSB during wine processing can affect juice and wine quality through the release of volatile compounds produced as a stress response. The major secretes compounds are tridecane and trans-2-decenal. Tridecane is an odorless compound and its effect on wine quality is currently unknown. Trans-2-decenal is an unsaturated aldehyde considered to be the main component of BMSB taint with strong green, coriander, and musty-like aromas. Its threshold value in wine was estimated at about 5 µg/L.

The use of epifluorescence versus plating to monitor the effect of different parameters on microorganisms in wine

The monitoring of the number of micro-orgranisms in wine is crucial for the wine producer. Traditional counting methods include microscopic enumeration and plating on selective media, which measures the culturability of the cells. The use of epifluorescence microscopy is, however, a method, which can measure both culturability and

Viñedos de la D.O. Ribeira Sacra: heterogeneidad varietal y sanitaria

La D.O. Ribeira Sacra (Galicia, N.O. de España) se distribuye a lo largo de las riberas de los ríos Miño y Sil. Su característica mas destacada son las fuertes pendientes. Desde 1990 se estudia el estado

Drought responses of grapevine cultivars under different environments

Using grapevine genetic diversity is one of the strategies to adapt viticulture to climate change. In this sense, assessing the plasticity of cultivars in their responses to environmental conditions is essential. For this purpose, the drought tolerance of Grenache, Tempranillo and Semillon cultivars grafted onto SO4 was evaluated at two experimental vineyards, one located in Valencia (Spain) and the other in Bordeaux (France). This was done by assessing gas exchange parameters, water relations and leaf hydraulic traits at the end of the season.