Terroir 2004 banner
IVES 9 IVES Conference Series 9 The use of remote sensing in South-African terroir research

The use of remote sensing in South-African terroir research

Abstract

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability. While this technology holds promise for precision vineyard management as well as segmented harvesting of grapes, its potential as a tool in research has not yet been fully utilised. It holds promise as a tool to study the interaction of the grapevine with its environment, especially with regards to differences in vine performance due to soil variability. One of the most important goals of this research is to determine how the information derived from the vegetation indices used in the imaging relates to grapevine performance. Another objective is to assess the effects of practices that could differ between vineyards, such as trellis systems or canopy management on the image signal.
In a terroir study, aerial images were used to optimise plot layouts in the vineyards at different localities according to vineyard characteristics. Factors limiting or enhancing vine vigour were investigated using multispectral images. The use of hyperspectral satellite imagery from the Hyperion imager was also investigated as an additional tool to monitor the effects of the environment on the performance of the grapevine.
Terroir research focuses on identifying homogenous environmental units that have a specific viticultural and oenological potential. It is deemed necessary to investigate the “building blocks” of these “homogenous” units, which may encompass high levels of variability, in order to adapt them to a micro-scale for application on a vineyard level. Closer investigation of these “micro” terrroirs that exist within vineyards may enable us to utilise the full potential of our diverse natural environment.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A.E. Strever

Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

Contact the author

Keywords

Vine, Vitis vinifera L., remote sensing, high resolution, intrablock management, vineyard leaf area, NDVI

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Innovations on red winemaking process by ultrasound technology

High power ultrasound has been recently recognized one of the most promising technologies in winemaking processes, especially after the recent OIV resolution, concerning the application of ultrasounds on crushed grapes to promote the extraction of skin compounds.

Exploring diversity of grapevine responses to Flavescence dorée infection

Flavescence dorée, a serious threat to grapevine cultivation in several European Countries, is caused by phytoplasmas in the 16Sr-V ribosomal group, classified as quarantine organisms in the EU and transmitted mainly by the insect vector Scaphoideus titanus. The disease is controlled only by indirect and preventive measures, with important economic and environmental concerns. Genetic resources from the great variety of Vitis vinifera germplasm together with application of new genomic techniques could be applied to produce resistant/tolerant plants, once the genetic bases of susceptibility are elucidated. In a current Italian project (BIORES*) we are evaluating different international and local grapevine cvs. as well as microvine plants for their response to FD transmission and multiplication in controlled conditions.

What to do to solve the riddle of vine rootstock induced drought tolerance

Climate change will increase the frequency of water deficit situation in some European regions, by the increase of the evapotranspiration and the reduction of rainfalls during the growing cycle. This requires finding ways of adaptation, including the use of plant material which is more tolerant to drought. In addition to the varieties used as scions that result in the typicality of wines, rootstocks constitute a relevant way of adaptation to more stressful environmental conditions.

Effect of soil type on Sauvignon blanc and Cabernet-Sauvignon wine style at different localities in South Africa

The wine producing regions of South Africa are characterized by climatic diversity. The Coastal Region has a Mediterranean climate, with a mean annual rainfall of c.

Grapevine abiotic stress induce tolerance to bunch rot

Context. Botrytis bunch rot occurrence is the most important limitation for the wine industry in humid climate viticulture.