Terroir 2004 banner
IVES 9 IVES Conference Series 9 The use of remote sensing in South-African terroir research

The use of remote sensing in South-African terroir research

Abstract

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability. While this technology holds promise for precision vineyard management as well as segmented harvesting of grapes, its potential as a tool in research has not yet been fully utilised. It holds promise as a tool to study the interaction of the grapevine with its environment, especially with regards to differences in vine performance due to soil variability. One of the most important goals of this research is to determine how the information derived from the vegetation indices used in the imaging relates to grapevine performance. Another objective is to assess the effects of practices that could differ between vineyards, such as trellis systems or canopy management on the image signal.
In a terroir study, aerial images were used to optimise plot layouts in the vineyards at different localities according to vineyard characteristics. Factors limiting or enhancing vine vigour were investigated using multispectral images. The use of hyperspectral satellite imagery from the Hyperion imager was also investigated as an additional tool to monitor the effects of the environment on the performance of the grapevine.
Terroir research focuses on identifying homogenous environmental units that have a specific viticultural and oenological potential. It is deemed necessary to investigate the “building blocks” of these “homogenous” units, which may encompass high levels of variability, in order to adapt them to a micro-scale for application on a vineyard level. Closer investigation of these “micro” terrroirs that exist within vineyards may enable us to utilise the full potential of our diverse natural environment.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A.E. Strever

Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

Contact the author

Keywords

Vine, Vitis vinifera L., remote sensing, high resolution, intrablock management, vineyard leaf area, NDVI

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

SSR analysis of some Vitis sylvestris (GMEL.) accessions of the Szigetköz and Fertő-hanság national park, Hungary

The evolution of cultivated plants played important role in the ascent of humanity. Research of their origin and evolution started at the beginning of the20th century, but till nowadays a lot of questions remain open. A large number of theories exist about the evolution of the European grapevine (Vitis vinifera L.). The Vitis sylvestris GMEL. in Hungary is a protected species.

The influence of pre-heatwave leaf removal on leaf physiology and berry development

Due to climate change, the occurrence of heatwaves and drought events is increasing, with significant impact on viticulture. Common ways to adapt viticulture to a changing climate include site selection, genotype selection, irrigation management and canopy management. The latter mentioned being for instance source-sink manipulations, such as leaf removal, with the aim to delay ripening.

Biosurfactant from corn-milling industry improves the release of phenolic compounds during red winemaking

AIM: Biosurfactants can be used as emulsifier agents to improve the taste, flavour, and quality of food-products with minimal health hazards [1]. They are surface-active compounds with antioxidant and solubilizing properties [2].

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

The impacts of frozen material-other-than-grapes (MOG) on aroma compounds of red wine varieties

An undesirable note called “floral taint” has been observed in red wines by winemakers in the Niagara region caused by large volumes of frozen leaves and petioles [materials-other-than-grapes (MOG)] introduced during mechanical harvest and subsequent winemaking late in the season. The volatiles, which we hypothesized are responsible, are primarily terpenes, norisoprenoids, and specific esters in frozen leaves and petioles. The purpose of this study was to investigate the volatile compounds which may cause the floral taint problem and explore how much of them (thresholds) may lead to the problem. Also, the glycosidic precursors of some of these compounds were analyzed to see the changes happening during frost events.