Terroir 2004 banner
IVES 9 IVES Conference Series 9 The use of remote sensing in South-African terroir research

The use of remote sensing in South-African terroir research

Abstract

The diversity of soil types in the Western Cape of South Africa leads to high levels of within-vineyard variability. Multispectral remote sensing has received a lot of attention recently in the South-African wine industry in an attempt to identify and deal with this variability. While this technology holds promise for precision vineyard management as well as segmented harvesting of grapes, its potential as a tool in research has not yet been fully utilised. It holds promise as a tool to study the interaction of the grapevine with its environment, especially with regards to differences in vine performance due to soil variability. One of the most important goals of this research is to determine how the information derived from the vegetation indices used in the imaging relates to grapevine performance. Another objective is to assess the effects of practices that could differ between vineyards, such as trellis systems or canopy management on the image signal.
In a terroir study, aerial images were used to optimise plot layouts in the vineyards at different localities according to vineyard characteristics. Factors limiting or enhancing vine vigour were investigated using multispectral images. The use of hyperspectral satellite imagery from the Hyperion imager was also investigated as an additional tool to monitor the effects of the environment on the performance of the grapevine.
Terroir research focuses on identifying homogenous environmental units that have a specific viticultural and oenological potential. It is deemed necessary to investigate the “building blocks” of these “homogenous” units, which may encompass high levels of variability, in order to adapt them to a micro-scale for application on a vineyard level. Closer investigation of these “micro” terrroirs that exist within vineyards may enable us to utilise the full potential of our diverse natural environment.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A.E. Strever

Department of Viticulture and Oenology, Stellenbosch University, Private Bag X1, 7602 Matieland, South Africa

Contact the author

Keywords

Vine, Vitis vinifera L., remote sensing, high resolution, intrablock management, vineyard leaf area, NDVI

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Oenological performances of new white grape varieties

The wine industry works to minimize pesticides and adapt to climate change. Breeding programs have developed disease-resistant grape varieties, particularly against downy and powdery mildew, to minimize pesticide applications [1]. However, their enological potential remains underexplored.

Temperature-based phenology modelling for the grapevine 

Historical phenology records have indicated that advances in key developmental stages such as budburst, flowering and veraison are linked to increasing temperature caused by climate change. Using phenological models the timing of grapevine development in response to temperature can be characterized and projected in response to future climate scenarios.
We explore the development and use of grapevine phenological models and highlight several applications of models to characterize the timing of key stages of development of varieties, within and between regions, and the result of projections under different climate change scenarios.

Subsurface irrigation: a means to reduce chemical and water inputs in vineyards

Grape growers around the world are seeking to reduce their reliance on herbicides. However, traditional alternatives to chemical weed control do not always integrate seamlessly into established vineyard operations. Employing nonchemical weed management often requires trellis alterations, purchasing or hiring new equipment, and depending on region, may significantly increase tractor passes required to reach desired level of weed control. Critical thinking and thoughtful strategies are necessary to minimize expenditures and maintain quality during the transition away from herbicides. In this trial, irrigation was installed underground in an effort to minimize water loss due to evaporation, better direct the water to the vines, and reduce weed growth in the difficult to control undervine area.

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations

Market entry strategies in the U.S. alcohol distribution: The case of French wine exporters

This study examines the different strategies adopted by wine exporters located in France for penetrating international alcohol distribution networks in the U.S. market (and to a lesser extent the Canadian market). Grounded in the Business-to-Business (B2B) marketing literature (Ellegaard and Medlin, 2018), this study adopts a framework integrating a ‘Stakeholder’ approach for understanding the logics behind exporters’ strategies to penetrate the alcohol distribution networks (wholesalers, importers, alcohol monopolies).