Terroir 2004 banner
IVES 9 IVES Conference Series 9 Using GIS to assess the terroir potential of an Oregon viticultural region

Using GIS to assess the terroir potential of an Oregon viticultural region

Abstract

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face. Combined with matching the site to a grape variety, this decision will ultimately affect the vineyard’s yield, the quality of the wine produced, and the vineyard’s long-term profitability. This research facilitates the process by modeling the climate and landscape in a relatively young grape growing region in Oregon, the Umpqua Valley American Viticultural Area (AVA). The result is an inventory of land suitability that provides both existing and new growers greater insight into the best terroir of the region.
A field survey using a Global Positioning System (GPS) and a varietal survey were conducted covering all of the vineyards in the Umpqua Valley AVA. The results have described the locational factors important for vineyard layout, training methods, soil types, irrigation and frost uses, and phenological variability across the region. Using the locational information from the surveys of existing vineyards as the baseline, a digital elevation model (10m resolution) was analyzed for topographical components of elevation, slope, and aspect, ultimately identifying those sites that have ideal conditions for growing grapes in the region. The topographical classifications are then combined with soil characteristics of drainage, depth to bedrock, water holding capacity, and pH to produce a composite landscape model of suitability which is then masked by zoning requirements to identify the best available sites. In addition, a composite climate model, derived from the PRISM gridded data, develops cool, intermediate, warm, and hot climate-maturity groupings based on ripening potential and multiple climate parameters important for winegrape production. Finally, the composite landscape and climate models are then combined to detail the best terroir for specific varietal groupings in the Umpqua Valley AVA.
Combining topography, soil, and land use finds over 3000 acres of nearly ideal landscapes that are suitable for vineyard development. The results indicate that very good landscapes exist across all climate maturity types with strong potential for future development and production of quality fruit and wines. Through the use of GPS and GIS technologies, this research has helped to further define the terroir potential of grape growing in the Umpqua Valley AVA. The results provide existing and future growers with baseline knowledge of the region’s grape growing potential relative to its topography, soil, land use, and climate. While not specifically addressing the cultural aspects of terroir (e.g., style-directed viticultural and enological practices), which typically take many years to become dominant, the results presented here should serve to initiate better decisions in the site selection process, thus leading to fewer and/or more efficient trial and error procedures. In addition, for most potential growers, site selection will involve compromises, in that few sites will possess ideal characteristics in every respect. While compromise in many cases has been the rule, this body of research presents one of the best tools yet to enhance the site selection process for future growers in the Umpqua Valley AVA. Finally, the process developed here theoretically can be applied to any area where adequate spatial data resources are available.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gregory V. Jones (1), Peder Nelson (2), and Nicholas Snead (3)

(1) Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, OR 97520, USA
(2) Environmental Education Program, Southern Oregon University, Ashland, OR, USA
(3) Department of Planning Public Policy & Management, University of Oregon, Eugene, OR, USA

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Glucosidase and esterase salivary activities and their involvement in consumer’s wine sensory perception and liking

Wine flavour is the integration of distinct physiologically defined sensory systems that combine taste, aroma and trigeminal sensations, and it is a key determinant factor for the acceptance of wine by consumers. Volatile compounds, are important contributors to wine flavour, specially to aroma. These small and low-boiling point compounds are easily released into the air allowing to enter and move within the nasal or oral cavities where they can bind the olfactory receptors. Additionally, wine also contains aroma precursors, which are non-volatile compounds, but that can be broken down releasing volatile odorants. During wine tasting, all these chemicals (volatiles and non-volatiles) can be submitted to the action of salivary enzymes.

Understanding the complexity of grapevine winter physiology in the face of changing climate

The vast majority of our understanding of grapevine physiology is focused on the processes that occur during the growing season. Though not obvious, winter physiological changes are dynamic and complex, and have great influence on the survival and phenology of grapevines. In cool and cold climates, winter temperatures are a constant threat to vine survival. Additionally, as climate changes, grapevine production is moving toward more traditionally cool and cold climates, either latitudinal or altitudinal in location. Our research focuses on understanding how grapevines navigate winter physiological changes and how temperature impacts aspects of cold hardiness and dormancy. Through these studies, we have gained keen insight into the connections between winter temperature, maximum cold haridness, and budbreak phenology, that can be used to develop prediction models for viticulture in a changing climate.

Development of a strategy for measuring fruity aroma potential in red wine

Levels of esters derived from substituted acids increase during the first years of aging and some of them are strongly involved in red wine fruity aromatic expression.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

Armenia: historical origin of domesticated grapevine

The Armenian highlands are located on the northern border of western asia and stretch up to the caucasus from the north. Throughout human history, country has played an important role in connecting the civilizations of europe and the near east. The recent large-scale study about the dual domestication origin and evolution of grapes approved that in the Armenian highlands human and grapevine stories are interlaced through centuries and roots of grapevine domestication are found deep in the pleistocene, ending 11.5 thousand years ago. Findings of this study confirmed that glacial episodes distinguish wild grapes into eastern and western ecotypes around 200-400 ka.