Terroir 2004 banner
IVES 9 IVES Conference Series 9 Using GIS to assess the terroir potential of an Oregon viticultural region

Using GIS to assess the terroir potential of an Oregon viticultural region

Abstract

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face. Combined with matching the site to a grape variety, this decision will ultimately affect the vineyard’s yield, the quality of the wine produced, and the vineyard’s long-term profitability. This research facilitates the process by modeling the climate and landscape in a relatively young grape growing region in Oregon, the Umpqua Valley American Viticultural Area (AVA). The result is an inventory of land suitability that provides both existing and new growers greater insight into the best terroir of the region.
A field survey using a Global Positioning System (GPS) and a varietal survey were conducted covering all of the vineyards in the Umpqua Valley AVA. The results have described the locational factors important for vineyard layout, training methods, soil types, irrigation and frost uses, and phenological variability across the region. Using the locational information from the surveys of existing vineyards as the baseline, a digital elevation model (10m resolution) was analyzed for topographical components of elevation, slope, and aspect, ultimately identifying those sites that have ideal conditions for growing grapes in the region. The topographical classifications are then combined with soil characteristics of drainage, depth to bedrock, water holding capacity, and pH to produce a composite landscape model of suitability which is then masked by zoning requirements to identify the best available sites. In addition, a composite climate model, derived from the PRISM gridded data, develops cool, intermediate, warm, and hot climate-maturity groupings based on ripening potential and multiple climate parameters important for winegrape production. Finally, the composite landscape and climate models are then combined to detail the best terroir for specific varietal groupings in the Umpqua Valley AVA.
Combining topography, soil, and land use finds over 3000 acres of nearly ideal landscapes that are suitable for vineyard development. The results indicate that very good landscapes exist across all climate maturity types with strong potential for future development and production of quality fruit and wines. Through the use of GPS and GIS technologies, this research has helped to further define the terroir potential of grape growing in the Umpqua Valley AVA. The results provide existing and future growers with baseline knowledge of the region’s grape growing potential relative to its topography, soil, land use, and climate. While not specifically addressing the cultural aspects of terroir (e.g., style-directed viticultural and enological practices), which typically take many years to become dominant, the results presented here should serve to initiate better decisions in the site selection process, thus leading to fewer and/or more efficient trial and error procedures. In addition, for most potential growers, site selection will involve compromises, in that few sites will possess ideal characteristics in every respect. While compromise in many cases has been the rule, this body of research presents one of the best tools yet to enhance the site selection process for future growers in the Umpqua Valley AVA. Finally, the process developed here theoretically can be applied to any area where adequate spatial data resources are available.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Gregory V. Jones (1), Peder Nelson (2), and Nicholas Snead (3)

(1) Department of Geography, Southern Oregon University, 1250 Siskiyou Blvd, Ashland, OR 97520, USA
(2) Environmental Education Program, Southern Oregon University, Ashland, OR, USA
(3) Department of Planning Public Policy & Management, University of Oregon, Eugene, OR, USA

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Modeling island and coastal vineyards potential in the context of climate change

Climate change impacts regional and local climates, which in turn affects the world’s wine regions. In the short term, these modifications rises issues about maintaining quality and style of wine, and in a longer term about the suitability of grape varieties and the sustainability of traditional wine regions. Thus, adaptation to climate change represents a major challenge for viticulture. In this context, island and coastal vineyards could become coveted areas due to their specific climatic conditions. In regions subject to warming, the proximity of the sea can moderate extremes temperatures, which could be an advantage for wine. However, coastal and island areas are particular prized spaces and subject to multiple pressures that make the establishment or extension of viticulture complex.
In this perspective, it seems relevant to assess the potentialities of coastal and island areas for viticulture. This contribution will present a spatial optimization model that tends to characterize most suitable agroclimatic patterns in historical or emerging vineyards according to different scenarios. Thanks to an in-depth bibliography a global inventory of coastal and insular vineyards on a worldwide scale has been realized. Relevant criteria have been identified to describe the specificities of these vineyards. They are used as input data in the optimization process, which will optimize some objectives and spatial aspects. According to a predefined scenario, the objectives are set in three main categories associated with climatic characteristics, vineyards characteristics and management strategies. At the end of this optimization process, a series of maps presents the different spatial configurations that maximize the scenario objectives.

El viñedo en Lanzarote y el Archipiélago Canario

La isla de Lanzarote, primera en ser ocupada en los albores del siglo XV, es la única del archipiélago, junto con Fuerteventura, que no produjo vino. Ocasionalmente hubo algún parral para el consumo

Outils de caracterisation et zonage des paysages viticoles: application aux vignobles français

Un paysage viticole est une relation entre des formes, dimension objective, et la perception que nous en avons, dimension subjective, émotionnelle. La viticulture n’est pas seulement productrice d’un vin, elle contribue également à façonner le paysage. Pourtant, jusqu’à présent, la connaissance des terroirs était principalement basée sur la caractérisation de leur aptitude à produire des vins de qualité.

Explorando el potencial bioprotector de levaduras nativas no-Saccharomyces en la vinificación: resultados preliminares

The use of the term bioprotection in winemaking refers to the use of non-chemical methods to prevent the development of undesirable microorganisms (yeasts and/or bacteria). The reason for studying this method is mainly as a natural alternative to the addition of sulfites during the pre-fermentation stages. In winemaking, the addition of s02 has multiple functions, the main ones being antiseptic and antioxidant power.

Oenological potential of wines and agronomical characterisation of grapes from five white resistant Italian varieties at Serra Gaúcha, Southern Brazil

Rio grande do sul is the main grape producing state in Brazil, with the largest wine-growing area, responsible by 90% of the national production of wines and grape juices. Serra Gaúcha is the main vitivinicultural region, where around 15% of the area is destined to produce wines from vitis vinifera L. grapes. This region presents high rainfall during the grape maturation cycle, a factor that leads to great risk of attacks by fungal pathogens. the use of resistant varieties can reduce the cost and quantity of spraying, improving wine quality, focusing on a sustainable vitiviniculture.