Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Abstract

[English version below]

Les images de très haute résolution spatiale sont utilisées depuis peu en viticulture comme une aide à la cartographie des zones de vendanges. A partir d’images multispectrales de très haute résolution spatiale IKONOS (résolution 4 m) et SPOT-5 en supermode (résolution 2.5 m), on propose ici une démarche de segmentation d’une région de vignoble en zones de vendanges. Outre les états de la végétation de la vigne, on considère une caractérisation des états de surface du sol. La démarche repose sur une étude diachronique à deux dates sensibles du cycle de la vigne, mars 2001 (IKONOS) et juillet 2002 (SPOT-5). L’étude porte sur 134 ha, comprenant 23 parcelles irriguées de Cabernet-Sauvignon. Les traitements d’images consistent en des masquages, réalisés à partir d’une image infra-rouge couleur, qui isolent tour à tour la végétation de la vigne ou les sols nus. Des classifications ascendantes hiérarchiques conduisent à déterminer 6 classes de végétation de la vigne, ordonnées par niveau de biomasse (et d’activité) chlorophyllienne, et 4 classes de sols nus. Ces résultats montrent que le niveau de biomasse chlorophyllienne de la vigne est spécifiquement associé à certaines classes de sols nus. Les résultats sont discutés en liaison avec des informations viticoles concernant cépage, mode de conduite, orientation des rangs, enherbement, irrigation, âge des ceps, densité de plantation.

Use of very high-resolution images, as a support to demarcating grape harvest zones, is recent in viticulture. Using very high resolution IKONOS (4 m-resolution) and supermode SPOT-5 (2.5 m-resolution) multispectral images, this paper here proposes an approach of segmentating a vineyard region into grape harvest zones. In addition to vine vegetation states, soil surface is characterized. This approach relies on a diachronic study at two significant dates of the vine cycle: March 2001 (IKONOS) and July 2002 (SPOT-5). The study is carried out over 134 ha, comprising 23 Cabernet-Sauvignon irrigated plots. Images are processed by successive maskings carried out on a Infrared Color (IRC) image, which alternately isolate vine vegetation or bare soils. The performing of Ascending Hierarchical Classifications result in defining 6 vine vegetation classes, which are ranked by chlorophyll biomass (and activity) qualitative level, and 4 bare soil classes. These results demonstrate that vine chlorophyll biomass qualitative levels are specifically related to some classes of bare soils. Results are discussed in relationship with viticultural data referring to variety, training system, row orientation, grass cover, irrigation, plant age, planting density.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P. Parra Emilfork and E. Vaudour

Institut National Agronomique Paris-Grignon, UMR INRA/INA P-G “Environnement et Grandes Cultures” – Equipe Sol-DMOS, Centre de Grignon BP 01, 78850 Thiverval-Grignon, France

Contact the author

Keywords

Satellite remote sensing, terroir, vine, diachrony

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Performance of Selected Uruguayan Native Yeasts for Tannat Wine Production at Pilot Scale

The wine industry is increasing the demand for indigenous yeasts adapted to the terroir to produce unique wines that reflect the distinctive characteristics of each region. In our group, we have identified and characterized 60 native yeast strains isolated from a vineyard in Maldonado-Uruguay, in which three strains stood out: Saccharomyces cerevisiae T193FS, Saturnispora diversa T191FS, and Starmerella bacillaris T193MS. Their oenological potential was evaluated at a semi-pilot scale in Tannat must vinification in the wine cellar to have a more precise and representative evaluation of the final product.

The legal concept of “cultural heritage” to refurbish the wine sector’s priorities

Following the latest oiv global report (april 26, 2024), the prevailing perception of wine consumption finds itself undergoing one of its most challenging adjustments. It’s plausible to anticipate a shift in the scope of pdo wines towards more human-centered products (wells and stiefel, 2019), necessitating the entire sector to adapt strategies to public interest patterns (touzeau, 2010: 17-31). Previously, a dominant notion of cultural property underscored the value of wine regions; the primary interest revolved around estate owners and retailers, along with vigneron tales.

Validation of phenological models for grapevine in the Veneto region

In this study we have compared the predictive ability of two phenological models: a traditional Thermal Time (TT) and a version of the more recently develop Unified Model (UM).

Building new temperature indexes for a local understanding of grapevine physiology

Aim: Temperature corresponds to one of the main terroir factors influencing grapevine physiology, primarily evidenced by its impact on phenology. Numerous studies have aimed at expressing time with thermal indices such as growing degree days (GDD) and have thus enabled a better modelling of grapevine responses to temperature. However, some works have highlighted the need to adapt