Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Abstract

[English version below]

Les images de très haute résolution spatiale sont utilisées depuis peu en viticulture comme une aide à la cartographie des zones de vendanges. A partir d’images multispectrales de très haute résolution spatiale IKONOS (résolution 4 m) et SPOT-5 en supermode (résolution 2.5 m), on propose ici une démarche de segmentation d’une région de vignoble en zones de vendanges. Outre les états de la végétation de la vigne, on considère une caractérisation des états de surface du sol. La démarche repose sur une étude diachronique à deux dates sensibles du cycle de la vigne, mars 2001 (IKONOS) et juillet 2002 (SPOT-5). L’étude porte sur 134 ha, comprenant 23 parcelles irriguées de Cabernet-Sauvignon. Les traitements d’images consistent en des masquages, réalisés à partir d’une image infra-rouge couleur, qui isolent tour à tour la végétation de la vigne ou les sols nus. Des classifications ascendantes hiérarchiques conduisent à déterminer 6 classes de végétation de la vigne, ordonnées par niveau de biomasse (et d’activité) chlorophyllienne, et 4 classes de sols nus. Ces résultats montrent que le niveau de biomasse chlorophyllienne de la vigne est spécifiquement associé à certaines classes de sols nus. Les résultats sont discutés en liaison avec des informations viticoles concernant cépage, mode de conduite, orientation des rangs, enherbement, irrigation, âge des ceps, densité de plantation.

Use of very high-resolution images, as a support to demarcating grape harvest zones, is recent in viticulture. Using very high resolution IKONOS (4 m-resolution) and supermode SPOT-5 (2.5 m-resolution) multispectral images, this paper here proposes an approach of segmentating a vineyard region into grape harvest zones. In addition to vine vegetation states, soil surface is characterized. This approach relies on a diachronic study at two significant dates of the vine cycle: March 2001 (IKONOS) and July 2002 (SPOT-5). The study is carried out over 134 ha, comprising 23 Cabernet-Sauvignon irrigated plots. Images are processed by successive maskings carried out on a Infrared Color (IRC) image, which alternately isolate vine vegetation or bare soils. The performing of Ascending Hierarchical Classifications result in defining 6 vine vegetation classes, which are ranked by chlorophyll biomass (and activity) qualitative level, and 4 bare soil classes. These results demonstrate that vine chlorophyll biomass qualitative levels are specifically related to some classes of bare soils. Results are discussed in relationship with viticultural data referring to variety, training system, row orientation, grass cover, irrigation, plant age, planting density.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P. Parra Emilfork and E. Vaudour

Institut National Agronomique Paris-Grignon, UMR INRA/INA P-G “Environnement et Grandes Cultures” – Equipe Sol-DMOS, Centre de Grignon BP 01, 78850 Thiverval-Grignon, France

Contact the author

Keywords

Satellite remote sensing, terroir, vine, diachrony

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

REVEALING THE ORIGIN OF BORDEAUX WINES WITH RAW 1D-CHROMATOGRAMS

Understanding the composition of wine and how it is influenced by climate or wine-making practices is a challenging issue. Two approaches are typically used to explore this issue. The first approach uses chemical
fingerprints, which require advanced tools such as high-resolution mass spectrometry and multidimensional chromatography. The second approach is the targeted method, which relies on the widely available 1-D GC/MS, but involves integrating the areas under a few peaks which ends up using only a small fraction of the chromatogram.

Molecular characterization of wines nucleophilic potential by ultra-performance liquid chromatography high resolution mass spectrometry

The knowledge about the molecular fraction associated to white wines oxidative stability is still poorly understood.

Colour, phenolic, and sensory characteristics of commercial monovarietal white wines produced with maceration

White wines produced with skin and seed contact are of great interest in the wine sector. Maceration, whether performed prior to or concurrently with alcoholic fermentation, or even extended beyond its completion, significantly impacts the chromatic, mouthfeel, and aroma characteristics of these wines.

Is your juice truly organic? An isotopic approach for certifying organic grape juice

The sustainability and authenticity of grape juice production have gained increasing attention, particularly regarding the environmental impact and health benefits of organic practices.

The evaluation of tannin activity in south african red wines

Astringency is an important red wine quality attribute, which can be measured both chemically and sensorially. The use of tannin activity shows potential as a valuable chemical measurement in understanding red wine mouthfeel properties such as astringency and bitterness, which is also affected by tannin structural factors, in addition to matrix effects. Tannin activity is defined as the enthalpy of interaction between tannins and a hydrophobic surface. Studies involving tannin activity have been performed since the early 2010’s, but chemosensory studies used to evaluate how structure-activity relationships change across multiple, consecutive vintages are limited. The aim of this study is to investigate how tannin activity may be linked to red wine mouthfeel, and how all these variables may change according to wine age.