Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Contribution of very high resolution satellite remote sensing to the mapping of harvest zones in the Maipo Valley (Chile)

Abstract

[English version below]

Les images de très haute résolution spatiale sont utilisées depuis peu en viticulture comme une aide à la cartographie des zones de vendanges. A partir d’images multispectrales de très haute résolution spatiale IKONOS (résolution 4 m) et SPOT-5 en supermode (résolution 2.5 m), on propose ici une démarche de segmentation d’une région de vignoble en zones de vendanges. Outre les états de la végétation de la vigne, on considère une caractérisation des états de surface du sol. La démarche repose sur une étude diachronique à deux dates sensibles du cycle de la vigne, mars 2001 (IKONOS) et juillet 2002 (SPOT-5). L’étude porte sur 134 ha, comprenant 23 parcelles irriguées de Cabernet-Sauvignon. Les traitements d’images consistent en des masquages, réalisés à partir d’une image infra-rouge couleur, qui isolent tour à tour la végétation de la vigne ou les sols nus. Des classifications ascendantes hiérarchiques conduisent à déterminer 6 classes de végétation de la vigne, ordonnées par niveau de biomasse (et d’activité) chlorophyllienne, et 4 classes de sols nus. Ces résultats montrent que le niveau de biomasse chlorophyllienne de la vigne est spécifiquement associé à certaines classes de sols nus. Les résultats sont discutés en liaison avec des informations viticoles concernant cépage, mode de conduite, orientation des rangs, enherbement, irrigation, âge des ceps, densité de plantation.

Use of very high-resolution images, as a support to demarcating grape harvest zones, is recent in viticulture. Using very high resolution IKONOS (4 m-resolution) and supermode SPOT-5 (2.5 m-resolution) multispectral images, this paper here proposes an approach of segmentating a vineyard region into grape harvest zones. In addition to vine vegetation states, soil surface is characterized. This approach relies on a diachronic study at two significant dates of the vine cycle: March 2001 (IKONOS) and July 2002 (SPOT-5). The study is carried out over 134 ha, comprising 23 Cabernet-Sauvignon irrigated plots. Images are processed by successive maskings carried out on a Infrared Color (IRC) image, which alternately isolate vine vegetation or bare soils. The performing of Ascending Hierarchical Classifications result in defining 6 vine vegetation classes, which are ranked by chlorophyll biomass (and activity) qualitative level, and 4 bare soil classes. These results demonstrate that vine chlorophyll biomass qualitative levels are specifically related to some classes of bare soils. Results are discussed in relationship with viticultural data referring to variety, training system, row orientation, grass cover, irrigation, plant age, planting density.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P. Parra Emilfork and E. Vaudour

Institut National Agronomique Paris-Grignon, UMR INRA/INA P-G “Environnement et Grandes Cultures” – Equipe Sol-DMOS, Centre de Grignon BP 01, 78850 Thiverval-Grignon, France

Contact the author

Keywords

Satellite remote sensing, terroir, vine, diachrony

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Environmental influence on grape phenolic and aromatic compounds in a Nebbiolo selection (Vitis vinifera L.)

Nebbiolo (Vitis vinifera L.) is one of the most important wine red cultivar of North-west Italy. A better understanding of the complex relations among grape aromatic and phenolic maturity and environmental factors may strongly contribute to the improvement of the quality of Nebbiolo wines.

Smartphone application use as a tool for water supply management

Uruguay had an average annual rainfall of 1200 mm characterized by a high monthly variability, which generates periods of water deficit and excess. The rational water management

Influence of withering on valpolicella docgs grapes volatile composition

The blend of grapes used in the production of the four Valpolicella PDOs red wines, namely Valpolicella, Valpolicella Classico Superiore, Recioto della Valpolicella and Amarone della Valpolicella is quite unique, and includes two main varieties Corvina and Corvinone, and other minor varieties. To a very large extent all these grapes are only grown in the province of Verona. One of the main characteristics of Valpolicella is the use of grapes that are submitted to post-harvest withering. The aim of this study was therefore to evaluate the evolution of the free and glycosidically-bound volatile compounds in Corvina and Corvinone grapes under real production conditions.

VALORIZATION OF GRAPE WINE POMACE USING PULSED ELECTRIC FIELDS (PEF) AND SUPERCRITICAL CO₂ (SC CO₂) EXTRACTION

Wine grape pomace quantitatively and qualitatively represents the most important fraction of wine waste. Namely, this by-product makes ~ 20% of the total mass of vinified grapes, and it is characterized with high concentrations of polyphenolic antioxidants, as well as grape seed oil. Hence, valorization of wine pomace, as an alternative to traditionally employed disposal, has drown considerable interest in recent years. Earlier studies were mostly focused on the extraction of phenolics, while mechanisms enhancing the extraction of lipid fraction from grape pomace, as well as their impact on the grape seed oil quality are far less investigated.

Asymmetrical flow field-flow fractionation with online multidetection is a viable tool to investigate colored red wine colloids

Despite its relevance for wine quality and stability, red wine colloids have not still been
sufficiently investigated, an occurrence due to the lack of suitable analytical techniques to study them as they are present in wine.