terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

Water availability at budbreak time in vineyards that are deficitary irrigated during the summer: Effect on must volatile composition

Abstract

In recent years, Mediterranean regions are being affected by marked climate changes, primarily characterized by reduced precipitation, greater concurrence of temperature extremes and drought during the growing season, and increased inter-annual variability in temperatures and rainfall. Generally, high-quality red wines need moderate water deficit. Hence, irrigation may be needed to avoid severe vine water stress occurring in some vintages and soils with low holding capacity. The aim of this work was to evaluate the effects of soil recharge irrigation in pre-sprouting and summer irrigation every week (30 % ETO) from the pea size state until the end of ripening (RP) compared to exclusively summer irrigation every week (R) in the same way that RP, on must volatile composition at harvest. The study has been carried out in 2021-2022 with four red varieties in different Spanish wine regions: Garnacha Tinta (Badajoz), Tempranillo (Valladolid), Syrah (Albacete) and Mencía (Lugo). The effects of irrigation frequency on must volatile composition have been evaluated through GC-MS.

In 2021 season, the total volatile composition (sum of free and glycosidically fractions) showed a trend to increase in R vs RP in Garnacha and Mencía cultivars due to the bound-glicosidically fraction. In contrast, Syrah cultivar showed a higher total concentration in RP than R. In 2022, a higher total concentration was observed in RP vs R for all cultivars with exception of Garnacha. These increases were motivated by bound-glicosidically fraction except to Tempranillo cultivar where the free fraction increased in RP vs R. In general, in 2022 season the soil recharge irrigation had a positive effect on musts volatile concentration. The results showed a higher effect of the variety and season than the irrigation strategy.

Acknowledgements: Project PID2019-105039RR-C4 for financing. We also thank to ICVV analytical service (Drs. Fernández, Morata and Pérez).

DOI:

Publication date: October 9, 2023

Issue: ICGWS 2023

Type: Poster

Authors

Vilanova M.1,6, Costa B.S.1, Uriarte D., Moreno D., Yuste J., Martínez-Porro D., Montoro A., Torija I., Cancela J.J.5,6

1 Instituto de Ciencias de la Vid y el Vino, 26007 Logroño (Spain)
2 Centro de Investigaciones Científicas y Tecnológicas de Extremadura, 06187 Badajoz (Spain)
3 Instituto Tecnológico Agrario de Castilla y León, 47071 Valladolid (Spain)
4 Instituto Técnico Agronómico Provincial, 02007 Albacete (Spain)
5 Universidade de Santiago de Compostela – EPSE, 27002 Lugo (Spain)
6 CropQuality: Crop Stresses and Their Effects on Quality, Associate Unit USC-CSIC (ICVV)

Contact the author*

Keywords

volatiles, deficit irrigation, Vitis vinifera

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Application of UV-B radiation in pre- and postharvest as an innovative and sustainable cultural practice to improve grape phenolic composition

Ultraviolet radiation (UVR) is a minor part of the solar spectrum, but it represents an important ecological factor that influences many biological processes related to plant growth and development. In recent years, the application of UVR in agriculture and food production is emerging as a clean and environmentally friendly technology.
In grapevine, many studies have been conducted on the effects of ambient levels of UVR, but there are few considering the effects of UV-B application on grape phenolic composition under commercial growing or postharvest conditions.

Unveiling a hidden link: does time hold the key to altered spectral signatures of grapevines under drought?

Remote sensing technology captures spectral data beyond the visible range, making it useful for monitoring plant stress. Vis-NIR (Visible-Near Infrared) spectroscopy (400-1000 nm) is commonly used to indirectly assess plant status during drought. One example is the widespread use of normalized difference vegetation index (NDVI) that is strongly linked to green biomass. However, a knowledge gap exists regarding the applicability of this method to all the drought conditions and if it is a direct correlation to the water status of the plant.

Decoupling the effects of water and heat stress on Sauvignon blanc berries

Climate changes have important consequences in viticulture, heat waves accompanied by periods of drought are encountered more and more frequently. This study aims to evaluate the single and combined effect of water deficit and high temperatures on the thiol precursors biosynthesis in Sauvignon blanc grapes. For this purpose, a protocol has been developed for the cultivation of berries on a solid substrate. The berries, collected at three different times starting from veraison and grown in vitro, were subjected to 4 different treatments: control (C), water stress (WS), heat stress (HS), combined water and heat stress (WSHS). Water stress was simulated by adding abscisic acid to the culture medium, while different temperatures, respectively 25°C and 35°C, were managed with two illuminated climatic chambers.

Genetic variation among wild grapes native to Japan

Domesticated grapes are assumed to have originated in the Middle East. However, a considerable number of species are native in East Asian countries such as China, Korea and Japan as well. Evidence suggests that a total of seven species and eight varieties have been found to be native to Japan. A wide level variation in morphology, genetic and fruit composition exist in wild grape native to Japan.

Effect of foliar application of urea and nano-urea on the cell wall of Monastrell grape skins

The foliar application of urea has been shown to be able to satisfy the specific nutritional needs of the vine as well as to increase the nitrogen composition of the must. On the other hand, the use of nanotechnology could be of great interest in viticulture as it would help to slow down the release of urea and protect it against possible degradation. Several studies indicate that cell wall synthesis and remodeling are affected by nitrogen availability.