Terroir 2004 banner
IVES 9 IVES Conference Series 9 Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Methodology to assess vine cultivation suitability using climatic ranges for key physiological processes: results for three South African regions

Abstract

Le climat a de fortes implications sur le bon fonctionnement physiologique de la vigne et a besoin d’être quantifié afin de déterminer l’aptitude des régions à la culture de la vigne. Une méthode, qui pourrait éventuellement servir à prévoir l’aptitude des régions à la culture de la vigne, est proposée. Les seuils climatiques (température, vitesse du vent et humidité relative) pour les processus physiologiques (aussi bien photosynthèse des feuilles qu’accumulation des sucres et potassium et formation d’acide organique et respiration) ont été étudiés dans trois régions viticoles d’Afrique du Sud (Stellenbosch, Roberston et Upington) pendant les périodes de pré-et post-véraison. Sont considérés à la fois les seuils climatiques optimum et extrêmes. Une variation importante dans le nombre d’heures disponibles pour le fonctionnement physiologique optimal (selon les paramètres étudiés) apparait entre les régions. En considérant tous les facteurs, la région de Stellenbosch semblerait être la plus appropiée aux besoins physiologiques étudiés pour la culture de la vigne.

Climate has serious implications on proper physiological functioning of grapevines and needs to be quantified in order to determine the vine cultivation suitability of grape growing regions. Methodology is proposed that may eventually be used to predict the suitability of regions/terroirs for grapevine cultivation. Climatic ranges of temperature, wind speed and relative humidity for key physiological processes (photosynthesis of the leaves as well as sugar and potassium accumulation, organic acid formation and respiration, and colour and flavour development in the grapes) were studied in three wine producing regions of South Africa (Stellenbosch, Robertson and Upington) during the pre- and post-véraison growth periods. Both optimum and extreme climatic ranges were considered. Marked variation in the number of hours available for optimal physiological functioning (according to the parameters studied) occurred between the regions. All factors considered, the Stellenbosch region would seem to be best suited to the studied physiological requirements for grapevine cultivation.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.J. Hunter (1) and V. Bonnardot (2)

1) Infruitec/Nietvoorbij-Institute for Fruit, Vine and Wine of the Agricultural Research Council (ARC) Private Bag X5026, 7599 Stellenbosch, South Africa
2) ARC-Institute for Soil, Climate and Water (ISCW), Private Bag X5026, 7599 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

La haie bocagère comme critère de zonage à l’échelle parcellaire

In the French AOCs, the production area of ​​the raw material can be subject to plot delimitation based on criteria of physical environment and use. On the other hand, many environmental zonings are developing and the AOCs are called upon include provisions relating to these concerns. Hedges, through their effects on local changes in the regional climate and on functional biodiversity, can impact the functioning of vines and orchards. It is for this reason that their consideration as a delimitation criterion is envisaged.

Estimation of stomatal conductance and chlorophyll fluorescence in Croatian grapevine germplasm under water deficit    

Water deficit profoundly impacts the quality of grapes and results in considerable reductions in crop yield. First symptoms manifest with reduced stomatal conductance and transpiration, accompanied by the wilting of apical leaves and tendrils. So far, there is no available data on the water stress response in Croatian grapevine germplasm. Therefore, objective of this study was to determine influence of genotype and treatment on stomatal conductance (gsw), transpiration (E), electron transport rate (ETR), and quantum efficiency in light (PhiPS2).

Improvement of sparkling wines production by a zoning approach in Franciacorta (Lombardy, Italy)

Franciacorta is a viticultural area which extends in the hills to the South of Iseo lake in Lombardy. It is particularly famous for the production of sparkling wines obtained mostly from Chardonnay and Pinot blanc and noir grapes. The name of this territory is of medieval origin and appeared for the first time in 1277 as “Franzacurta”, from the Latin “franchae curtes”, i.e. “tax-free” monasteries. It was geographically delimited in 1429, when it was a territory of the Republic of Venezia.

Analysis of off flavours in grapes infected with the fungal bunch rot pathogens, Aspergillus, Botrytis and Pencillium

Fungal bunch rots of grapes cause major losses to grape yield worldwide, yet the impact these moulds have on grape and wine quality is not well characterised. We sought to investigate the formation of unwanted volatile compounds of fungal origin in both synthetic grape juice culture media and in inoculated grape berries. Botrytis cinerea, Aspergillus niger, Aspergillus carbonarius, or Pencillium expansum were grown in synthetic grape juice medium and the culture homogenates analysed 4 and 7 days post inoculation. HS-SPME-GC-MS analysis of the culture homogenates 4 days post inoculation demonstrated that each of the fungi examined produced varying quantities of the mushroom or fungus-like aroma compounds, 1-Octen-3-ol, 1-Octen-3-one and 3-Octanone with A. carbonarius producing up to ten times the amounts of all three metabolites per mg of dry mycelium.

Volatile Organic Compound markers of Botrytis cinerea infection in artificially inoculated intact grape berries

The addition of partially dehydrated grapes to enrich must composition for producing complex dry/sweet wines represents a traditional practice in several regions of the world. However, the environmental conditions of dehydration chambers may facilitate the infection of Botrytis cinerea Pers. by promoting disease and provoking large grape losses. B. cinerea attack can induce alterations in the profile of volatile organic compounds (VOCs), which could be detected by sensors specifically trained to detect infection/disease-related compounds. These sensors could facilitate the early detection of the infection, consequently allowing to adjust some dehydration parameters.