Terroir 2004 banner
IVES 9 IVES Conference Series 9 An overview of geological influences on South African vineyards

An overview of geological influences on South African vineyards

Abstract

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.
In South Africa’s Coastal Region the oldest rocks comprise the Late Proterozoic – Cambrian shaley sediments of the Malmesbury Group, and the Cambrian age granitic intrusives of the Cape Granite Suite. Locally these are overlain by sediments of the Klipheuwel Group. These units are unconformably overlain the Middle Ordovician–Early Carboniferous Cape Supergroup, whose basal portion comprises the sandstones of the Table Mountain Group which produce the dramatic mountain scenery of the area.
The Breede River Region covers the valley of the Breede River, to the east of the Coastal Region. The Worcester fault is the major feature defining the geology of this area. To the east of the fault the geology is essentially similar to the Coastal Region. To the west the upper portions of the Cape Supergroup, the Bokkeveld and Witteberg Groups, are present comprising sandstone and shaley sediments. Late Carboniferous–Permian age sediments of the Karoo Supergroup overly the Cape Supergroup and Upper Jurassic-Early Cretaceous sediments of the Uitenhage Group are preserved locally as unconformable remnants.
The following geological features are important for the Coastal Regions vineyards. Soils are often acidic and potassium rich, whilst granites weather to produce both saprolites and kaolin, which are possibly unique in terms of vineyard soils. River gravels are noted in two scenarios, firstly vineyards are planted in river floodplains and secondly fossil gravel terraces exist above the current river level.
In the Breede River Region river gravels are important whilst a significant portion of vineyards are planted on loam soils containing calcareous layers. These calcareous layers are formed as a result of excess evaporation over precipitation in this low rainfall region. A geological control may exist for the formation of these calcareous layers above specific bedrock strata. These soils are unique in the South African context, as they are naturally alkaline.
In addition topography resulting from differential weathering of the geological units is significant in the local terroir. Factors such as warm or cool slope orientation and the effects of altitude on mean temperatures and rainfall are important.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

C. J. Bargmann

Geological Consultant, 5, Allt-y-Wennol, Pontprennau, Cardiff, CF23 8AS, United Kingdom

Contact the author

Keywords

Terroir, wine, geology, South Africa, Coastal Region, Breede River Region

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Conservation of intravarietal diversity in France: exhaustive overview and perspectives

Since the renewal of the French vineyard after the Phylloxera crisis, the panorama of cultivated varieties has dramatically changed. This current genetic erosion is due to the increasing interest

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

Influence of Lactiplantibacillus plantarum and Oenococcus oeni strains on sensory profile of sicilian nero d’avola wine after malolactic fermentation.

AIM: Malolactic fermentation is a process of decarboxylation of L-malic acid into L-lactic acid and carbon dioxide that leads to deacidification, modification of odors and flavors of wines [1]

Unveiling the chemical headspace of sparkling wine glasses by laser spectroscopy

Right after serving a sparkling wine into a glass, thousands of rising and bursting bubbles convey gas-phase CO2 and volatile organic compounds (VOCs) in the headspace above the champagne surface, thus progressively modifying the gaseous chemical space perceived by the consumer [1].

Biotic and abiotic factors affecting physiological aspects underlying vegetative vigour in two commercial grapevine varieties

Grapevine vigour, defined as the propensity to assimilate, store and/or use non-structural sugars for allowing fast growth of shoots and producing large canopies[1], is crucial to optimize vineyard management. Recently, a model has been proposed for predicting the vigor of young grapevines through the measurement of the vegetative growth and physiological parameters, such as water status and gas exchange[2]. Our objectives were (1) to explore the influence of the association of two grapevine varieties (Tempranillo and Cabernet Sauvignon, grafted onto R110 rootstocks) with arbuscular mycorrhizal fungi (AMF) on the vegetative vigour of young plants; and (2) to assess the effect of environmental factors linked to climate change on the vegetative vigour of Cabernet Sauvignon.