Terroir 2004 banner
IVES 9 IVES Conference Series 9 An overview of geological influences on South African vineyards

An overview of geological influences on South African vineyards

Abstract

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.
In South Africa’s Coastal Region the oldest rocks comprise the Late Proterozoic – Cambrian shaley sediments of the Malmesbury Group, and the Cambrian age granitic intrusives of the Cape Granite Suite. Locally these are overlain by sediments of the Klipheuwel Group. These units are unconformably overlain the Middle Ordovician–Early Carboniferous Cape Supergroup, whose basal portion comprises the sandstones of the Table Mountain Group which produce the dramatic mountain scenery of the area.
The Breede River Region covers the valley of the Breede River, to the east of the Coastal Region. The Worcester fault is the major feature defining the geology of this area. To the east of the fault the geology is essentially similar to the Coastal Region. To the west the upper portions of the Cape Supergroup, the Bokkeveld and Witteberg Groups, are present comprising sandstone and shaley sediments. Late Carboniferous–Permian age sediments of the Karoo Supergroup overly the Cape Supergroup and Upper Jurassic-Early Cretaceous sediments of the Uitenhage Group are preserved locally as unconformable remnants.
The following geological features are important for the Coastal Regions vineyards. Soils are often acidic and potassium rich, whilst granites weather to produce both saprolites and kaolin, which are possibly unique in terms of vineyard soils. River gravels are noted in two scenarios, firstly vineyards are planted in river floodplains and secondly fossil gravel terraces exist above the current river level.
In the Breede River Region river gravels are important whilst a significant portion of vineyards are planted on loam soils containing calcareous layers. These calcareous layers are formed as a result of excess evaporation over precipitation in this low rainfall region. A geological control may exist for the formation of these calcareous layers above specific bedrock strata. These soils are unique in the South African context, as they are naturally alkaline.
In addition topography resulting from differential weathering of the geological units is significant in the local terroir. Factors such as warm or cool slope orientation and the effects of altitude on mean temperatures and rainfall are important.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

C. J. Bargmann

Geological Consultant, 5, Allt-y-Wennol, Pontprennau, Cardiff, CF23 8AS, United Kingdom

Contact the author

Keywords

Terroir, wine, geology, South Africa, Coastal Region, Breede River Region

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Diurnal cycles of grapevine leaf water potential under field conditions

Les cycles journaliers du potentiel hydrique foliaire (Ψl) ont été établis toutes les heures, pour différents stades phénologiques, sur deux localités et en fonction de différentes mesures de la température de l’air et du déficit en pression de vapeur (VPD). De faibles valeurs pour ces 2 paramètres ont été enregistrées tout au long de la saison à

Terroir effects from the reflectance spectra of the canopy of vineyards in four viticultural regions

Knowledge of the reflectance spectrum of grape leaves is important to the identification of grape varieties in images of viticultural regions where several cultivars co-exist.

Politics meets terroir. The story of Prosecco – Are GI’s just a protectionist racket?

The recent Free Trade Agreement negotiations between Australia and the European Union have again put the issue of Geographical Indications (GIs) in the spotlight. Australia has long demonstrated its understanding of GIs and maintains a clear and rigorous GI protection system for wine. For many years, Australia’s wine sector was a strong advocate for GIs and a strong system to protect the

Evolution of biogenic amines content in wine during sample conservation – method optimisation for analysis of biogenicamines

The present paper reports the development of an optimized method for simultaneous analysis of
8 biogenic amines (Histamine, Methylamine, Ethylamine, Tyramine, Putrescine, Cadaverine, Phenethylamine, and Isoamylamine). It is based on a method developed by Gomez-Alonso et al. in 2007.

Evolution of the metabolic profile of grapes in a context of climate change

In the current context of global climate change, anticipating the evolution of the oenological potential of emblematic grape varieties of regions such as Burgundy and Champagne is a guarantee of the sustainability of a sector which has considerable economic weight. however, if various models of climate change cast doubt on the sustainability of these grape varieties in these regions, appellation decrees, as well as consumer expectations, do not allow or consider the use of alternative grape varieties. In addition, control/compensation methods such as irrigation are also not permitted.