Terroir 2004 banner
IVES 9 IVES Conference Series 9 An overview of geological influences on South African vineyards

An overview of geological influences on South African vineyards

Abstract

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.
In South Africa’s Coastal Region the oldest rocks comprise the Late Proterozoic – Cambrian shaley sediments of the Malmesbury Group, and the Cambrian age granitic intrusives of the Cape Granite Suite. Locally these are overlain by sediments of the Klipheuwel Group. These units are unconformably overlain the Middle Ordovician–Early Carboniferous Cape Supergroup, whose basal portion comprises the sandstones of the Table Mountain Group which produce the dramatic mountain scenery of the area.
The Breede River Region covers the valley of the Breede River, to the east of the Coastal Region. The Worcester fault is the major feature defining the geology of this area. To the east of the fault the geology is essentially similar to the Coastal Region. To the west the upper portions of the Cape Supergroup, the Bokkeveld and Witteberg Groups, are present comprising sandstone and shaley sediments. Late Carboniferous–Permian age sediments of the Karoo Supergroup overly the Cape Supergroup and Upper Jurassic-Early Cretaceous sediments of the Uitenhage Group are preserved locally as unconformable remnants.
The following geological features are important for the Coastal Regions vineyards. Soils are often acidic and potassium rich, whilst granites weather to produce both saprolites and kaolin, which are possibly unique in terms of vineyard soils. River gravels are noted in two scenarios, firstly vineyards are planted in river floodplains and secondly fossil gravel terraces exist above the current river level.
In the Breede River Region river gravels are important whilst a significant portion of vineyards are planted on loam soils containing calcareous layers. These calcareous layers are formed as a result of excess evaporation over precipitation in this low rainfall region. A geological control may exist for the formation of these calcareous layers above specific bedrock strata. These soils are unique in the South African context, as they are naturally alkaline.
In addition topography resulting from differential weathering of the geological units is significant in the local terroir. Factors such as warm or cool slope orientation and the effects of altitude on mean temperatures and rainfall are important.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

C. J. Bargmann

Geological Consultant, 5, Allt-y-Wennol, Pontprennau, Cardiff, CF23 8AS, United Kingdom

Contact the author

Keywords

Terroir, wine, geology, South Africa, Coastal Region, Breede River Region

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Peptides diversity and oxidative sensitivity: case of specific optimized inactivated yeasts

Estimation of the resistance of a wine against oxidation is of great importance for the wine. To that purpose, most of the commonly used chemical assays that are dedicated to estimate the antioxidant (or antiradical) capacity of a wine consist in measuring the capacity of the wine to reduce an oxidative compound or a stable radical.

Spatial determination of areas in the Western Balkans region favorable for organic production

In problematic conditions for production of grapes and wine caused by the COVID-19 pandemic and the resulting occurrence of wine surpluses, producers are increasingly turning to the innovative viticulture and winemaking of products that are more appealing to the market and the consumers. On the other hand, consumption of the food safety or organic products, and therefore of organic grapes and wine, is increasingly common in the world, in particular in Europe. The Regional Rural Development Standing Working Group (SWG RRD), as a regional intergovernmental organization gathers actors in the viticulture and winemaking sector from states and territories of the Western Balkans (South-East Europe) in the Expert Working Group for Wine, with the aim of improving viticulture and winemaking in this region through joint activities. In accordance with the aforementioned, the SWG RRD is working on advancing organic production of grapes and wine, and on recognition of specificities of the terroir of wine-growing areas in Western Balkans. In addition, as part of the project “Facilitation of Exchange and Advice on Wine Regulations in Western Balkan Countries” helmed by the German Federal Ministry of Food and Agriculture, in addition to harmonization of relevant legislation with EU regulations, efforts are being invested towards recognition of organic wines. Within activities and project implemented by this organization, expert analyses and scientific research of the terroir of Western Balkans were carried out, and some of the results are presented in this paper.

Monitoring small-scale alcoholic fermentations using a portable FTIR-ATR spectrometer and multivariate analysis

Although some wine production processes still rely on post-production evaluation and off-site laboratory analysis, the new winemaking industry is aware of a need for a better knowledge of the process to improve the properties of the final product. Thus, more and more wineries are interested in incorporating quality-by-design (QbD) strategies instead of postproduction testing because of the possibility to early detect deviations in fermentation or any other wine process. This would allow to detect unwanted situations and eventually to ‘readjust’ the process, thus minimizing rejects.

Convergence and divergence in chemical and sensory profiles of disease-resistant and Vitis vinifera white wines from South Tyrol: addressing strategies for market adoption

This study investigates the chemical and sensory profiles of white wines produced from disease-resistant hybrid grape cultivars (DRHGCs) compared to traditional Vitis vinifera L. cultivars in South Tyrol, Italy.

Inhibition of Oenococcus oeni during alcoholic fermentation by a selected Lactiplantibacillus plantarum strain

The use of selected cultures of the species Lactiplantibacillus plantarum in Oenology has grown in prominence in recent years. While initial applications of this species centred very much around malolactic fermentation (MLF), there is strong evidence to show that certain strains can be harnessed for their bio-protective effects. Unwanted spontaneous MLF during alcoholic fermentation (AF), driven by rogue Oenococcus oeni, is a winemaking deviation that is very difficult to manage when it occurs. This work set out to determine the efficacy of one particular strain of Lactiplantibacillus plantarum(Viniflora® NoVA™ Protect), against this problem in Cabernet Sauvignon must. The work was carried out at commercial scale and in a winery environment and compared the bio-protective culture with the more traditional approach of reducing must pH by the addition of tartaric acid. The combination of both was also investigated. The concentration of both Oenococcus oeni and Lactiplantibacillus plantarum was determined using qPCR. The adventitious Oenococcus oeni showed the most growth during AF in the control wine, whereas in the wines treated with Lactiplantibacillus plantarum a bacteriostatic effect against this species was observed. This effect was comparable to the wines treated with tartaric acid. This has particular commercial relevance for controlling the flora in musts with high pH, or when the addition of tartaric acid is either not permitted or is prohibitive for other reasons.