Terroir 2004 banner
IVES 9 IVES Conference Series 9 An overview of geological influences on South African vineyards

An overview of geological influences on South African vineyards

Abstract

The role of soils and bedrock geology has long been acknowledged as a fundamental component of terroir. In South Africa the influence of geology is misunderstood and some important geological components will be highlighted in this paper.
In South Africa’s Coastal Region the oldest rocks comprise the Late Proterozoic – Cambrian shaley sediments of the Malmesbury Group, and the Cambrian age granitic intrusives of the Cape Granite Suite. Locally these are overlain by sediments of the Klipheuwel Group. These units are unconformably overlain the Middle Ordovician–Early Carboniferous Cape Supergroup, whose basal portion comprises the sandstones of the Table Mountain Group which produce the dramatic mountain scenery of the area.
The Breede River Region covers the valley of the Breede River, to the east of the Coastal Region. The Worcester fault is the major feature defining the geology of this area. To the east of the fault the geology is essentially similar to the Coastal Region. To the west the upper portions of the Cape Supergroup, the Bokkeveld and Witteberg Groups, are present comprising sandstone and shaley sediments. Late Carboniferous–Permian age sediments of the Karoo Supergroup overly the Cape Supergroup and Upper Jurassic-Early Cretaceous sediments of the Uitenhage Group are preserved locally as unconformable remnants.
The following geological features are important for the Coastal Regions vineyards. Soils are often acidic and potassium rich, whilst granites weather to produce both saprolites and kaolin, which are possibly unique in terms of vineyard soils. River gravels are noted in two scenarios, firstly vineyards are planted in river floodplains and secondly fossil gravel terraces exist above the current river level.
In the Breede River Region river gravels are important whilst a significant portion of vineyards are planted on loam soils containing calcareous layers. These calcareous layers are formed as a result of excess evaporation over precipitation in this low rainfall region. A geological control may exist for the formation of these calcareous layers above specific bedrock strata. These soils are unique in the South African context, as they are naturally alkaline.
In addition topography resulting from differential weathering of the geological units is significant in the local terroir. Factors such as warm or cool slope orientation and the effects of altitude on mean temperatures and rainfall are important.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

C. J. Bargmann

Geological Consultant, 5, Allt-y-Wennol, Pontprennau, Cardiff, CF23 8AS, United Kingdom

Contact the author

Keywords

Terroir, wine, geology, South Africa, Coastal Region, Breede River Region

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Influence of the unité de terroir base on the typicity of winesin the AOC Priorat in Tarragona

L’AOC Priorat, située derrière les montagnes du pré littoral de Tarragone, se caractérise par un climat méditerranéen avec une tendance à la continentalité et très peu de précipitation pendant le cycle végétatif. Les sols sont secs, pauvres et caillouteux, formés par des schistes. Au cours des années 2000 et 2001, une étude de l’influence du terroir sur la typicité des vins du Priorat a été réalisée en prenant comme référence trois cépages cultivés dans différentes parceIles pour mesurer l’effet du terroir et du mésoclimat sur la qualité des vins:

Characterization of Glycosidically Bound Aroma Compounds of País cv. grapes of different Chilean zones

País grape has been estimated to arrive to Chile almost 500 years ago, being the first strain grown in this country. Traditionally, this grape has been used to mix with other varieties, to produce poor quality wines, but today is beginning to be used in the production of high quality wines. However, very little is known about the chemical characteristics of this variety. The aroma is one of the most important quality attributes of wine. Volatile compounds of this beverage may come from the grape (varietal aromas), from the fermentation process, from the ageing. The aromatic compounds are found in the grape in two forms: as free volatile compounds and as non-volatile compounds. The last ones, are aroma precursors present mainly as glycoconjugates formed by a sugar and an aglycone…

Looking for a more efficient genotypes in water use. A key for a sustainable viticulture

Aim: Grapevine has traditionally been widely cultivated in drylands. However, in recent decades, a significant part of the viticulture all over the word and specifically in Mediterranean basin, is being irrigated. In recent years, due to climate change, among other reasons, the available natural water resources have been reduced substantially compromising the sustainability of viticulture, especially in the most arid areas

Using GIS to assess the terroir potential of an Oregon viticultural region

Deciding to grow grapes in Oregon is complex issue due to our diverse geography, climate, and relatively short history of grape growing. For any potential grape grower, vineyard site selection is the single most important decision they will face.

Which potential for Near Infrared Spectroscopy to characterize rootstock effects on grapevines?

Developing rootstocks adapted to environmental constraints constitutes a key lever for grapevine adaptation to climate change. In this context, Near Infrared Spectroscopy (NIRS) could be used as a high-throughput phenotyping technique to simplify the study of rootstocks in grafted situations. This study is an exploratory analysis to evaluate the potential of NIRS acquired on grafted tissues to reveal rootstock effects as well as the plasticity of combinations of scion/rootstock to better characterize these interactions.
Through the study of 25 combinations (5 scions times 5 rootstocks) in a dedicated experimental vineyard, we showed that NIRS obtained from grafted tissues capture rootstock and scion/rootstock interaction signals, up to 20% of the total variance at specific wavelengths.