Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Abstract

[English version below]

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique. La production des vins obtenus à la suite d’une déshydratation partielle des raisins peut être considérée un intéressant exemple de caractérisation d’un «territoire». La Valpolicella, une région collinaire au nord-ouest de Vérone (Italie) est célèbre non seulement pour le vin qui porte le même nom, mais aussi pour le Recioto et l’Amarone qui sont obtenus à la suite d’une déshydratation des raisins en post-récolte. Le procédé de la déshydratation est obtenu avec des méthodes traditionnelles ou, plus récemment, avec de nouveaux systèmes de perte d’eau (intensité et vitesse) avec des conséquences sur la physiologie de la baie et les aspects qualitatifs du vin. Une comparaison entre une déshydratation rapide et une lente a été effectuée sur la variété Corvina et on reporte des données biochimiques et moléculaires liées à des paramètres qualitatifs (anthocyanine, resvératrol). Un deuxième exemple est représenté par la «Terra della Valle del Piave» et son vin Raboso Piave, souvent caractérisé par un goût assez désagréable dû aux polyphénols qui ne sont pas équilibrés et mûrs. L’application de la technique DMR (Doppia Maturazione Ragionata -Double Maturation Raisonnée) permet de résoudre ce problème: on reporte les données concernant l’effet de l’application de cette technique sur les propriétés organoleptiques du vin.

In the definition and description of a “territoire” (“terra”, in Italian), together with environmental and genetic factors, an important role is also played by agronomic, technical, and cultural aspects that contribute to characterize the produce of the specific area. The production of wines obtained following partial dehydration of harvested grapes may be considered as an interesting example of “territoire” characterization. Valpolicella, a hilly area North-West of Verona (Italy), is famous not only for its homonymous wine but also for the Recioto and Amarone that are obtained following dehydration of harvested grapes. The withering process is accomplished with traditional methods, or, in recent years, with new drying systems differently affecting the loss of water process (rate, intensity) with consequences on berry physiology and wine quality traits. Slow and rapid dehydration rates have been compared and some biochemical and molecular parameters linked to quality aspects (anthocyanins, resveratrol) have been monitored in the cv Corvina. A second example is represented by “Terra della Valle del Piave” and its Raboso wine, characterized by a strong and sometimes unpleasant taste, due to unbalanced polyphenol content. The application of the DMR technique (cluster bearing canes detached and berries allowed to over-ripen in the field) solves this problem: results concerning organoleptic evaluations of grapes and wines obtained using this technique are reported.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P. Tonutti (1), G. B. Tornielli (2), G. Cargnello (3)

(1) Department of Environmental Agronomy and Crop Science – University of Padova – Sede di Conegliano Viale XXVIII Aprile, 14, 31015 Conegliano – Treviso (Italy)
(2) CIVE – University of Verona Via della Pieve 64, 37029 San Floriano-Verona (Italy)
(3) SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura Viale XXVIII Aprile, 26 31015 Conegliano – Treviso (Italy)

Contact the author

Keywords

Over-ripening, dehydration techniques, post-harvest, organoleptic quality, sensory evaluation

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Inhibitory effect of sulfur dioxide, ascorbic acid and glutathione on browning caused by laccase activity

AIM: The aim of this work was to study the inhibitory effect of the three most frequently used wine antioxidants – sulfur dioxide, ascorbic acid and glutathione – on the kinetics of browning caused by Botrytis cinerea laccase using a grape juice synthetic model in which (-)-epicatechin was the substrate.

Grapevine cane pruning extract enhances plant physiological capacities and decreases phenolic accumulation in canes and leaves 

Vine cane extracts are a valuable byproduct due to their rich content of polyphenols, vitamins, and other beneficial compounds, which can affect and benefit the vine and the grapes. This study aims to evaluate the response of grapevine plants to irrigation with water supplemented with a vine cane extract, both at physiology response and phenolic composition in different parts of the plant (root, trunk, shoot, leaf, and berry).
Cane extract was obtained by macerating crushed pruning residues with warm water (5:1) and pectolytic enzymes. Two-year-old potted plants were irrigated with water (Control) while others were irrigated with cane extracts, either at 1:4 (w/v, cane extract/water; T 1:4) or at 1:8 (w/v, cane extract/water; T 1:8).

Wine labelling with the list of ingredients: context, consumer’s perception and future challenges

In this video recording of the IVES science meeting 2024, Stéphane La Guerche (Œnoppia, Paris, France) speaks about wine labelling with the list of ingredients: context, consumer’s perception and future challenges. This presentation is based on an original article accessible for free on IVES Technical Reviews.

A NEW TOOL TO QUANTIFY COMPOUNDS POTENTIALLY INVOLVED IN THE FRUITY AROMA OF RED WINES. DEVELOPMENT AND APPLICATION TO THE STU-DY OF THE FRUITY CHARACTER OF RED WINES MADE FROM VARIOUS GRAPE VARIETIES

A wide range of olfactory descriptors ranging from fresh and jammy fruit notes to cooked and oxidized fruit notes could describe the fruity aroma of red wines [1]. The fruity character of a wine is mainly related to the grape variety selected, to the terroir and the vinification process applied for its conception. In white wines, some volatile compounds confer directly their aroma to the wine while the question of “key” compound is more complex in red wines. According to many studies performed over the past decades, some fruity ethyl esters are directly involved in the fruity perception of red wines while others, present at subthreshold concentrations, participate indirectly to the fruity expression via perceptive interactions [2].

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.