Terroir 2004 banner
IVES 9 IVES Conference Series 9 Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Characterization of “territoires” throughout the production of wines obtained with withered grapes: the cases of “Terra della Valpolicella” (Verona) and “Terra della Valle del Piave” (Treviso) in Northern Italy

Abstract

[English version below]

Dans la définition et la description d’un “territoire” (“terra” en italien), avec les facteurs du milieu et génétiques, un rôle important est joué par ceux agronomiques, techniques et de culture qui contribuent à caractériser le produit d’une zone spécifique. La production des vins obtenus à la suite d’une déshydratation partielle des raisins peut être considérée un intéressant exemple de caractérisation d’un «territoire». La Valpolicella, une région collinaire au nord-ouest de Vérone (Italie) est célèbre non seulement pour le vin qui porte le même nom, mais aussi pour le Recioto et l’Amarone qui sont obtenus à la suite d’une déshydratation des raisins en post-récolte. Le procédé de la déshydratation est obtenu avec des méthodes traditionnelles ou, plus récemment, avec de nouveaux systèmes de perte d’eau (intensité et vitesse) avec des conséquences sur la physiologie de la baie et les aspects qualitatifs du vin. Une comparaison entre une déshydratation rapide et une lente a été effectuée sur la variété Corvina et on reporte des données biochimiques et moléculaires liées à des paramètres qualitatifs (anthocyanine, resvératrol). Un deuxième exemple est représenté par la «Terra della Valle del Piave» et son vin Raboso Piave, souvent caractérisé par un goût assez désagréable dû aux polyphénols qui ne sont pas équilibrés et mûrs. L’application de la technique DMR (Doppia Maturazione Ragionata -Double Maturation Raisonnée) permet de résoudre ce problème: on reporte les données concernant l’effet de l’application de cette technique sur les propriétés organoleptiques du vin.

In the definition and description of a “territoire” (“terra”, in Italian), together with environmental and genetic factors, an important role is also played by agronomic, technical, and cultural aspects that contribute to characterize the produce of the specific area. The production of wines obtained following partial dehydration of harvested grapes may be considered as an interesting example of “territoire” characterization. Valpolicella, a hilly area North-West of Verona (Italy), is famous not only for its homonymous wine but also for the Recioto and Amarone that are obtained following dehydration of harvested grapes. The withering process is accomplished with traditional methods, or, in recent years, with new drying systems differently affecting the loss of water process (rate, intensity) with consequences on berry physiology and wine quality traits. Slow and rapid dehydration rates have been compared and some biochemical and molecular parameters linked to quality aspects (anthocyanins, resveratrol) have been monitored in the cv Corvina. A second example is represented by “Terra della Valle del Piave” and its Raboso wine, characterized by a strong and sometimes unpleasant taste, due to unbalanced polyphenol content. The application of the DMR technique (cluster bearing canes detached and berries allowed to over-ripen in the field) solves this problem: results concerning organoleptic evaluations of grapes and wines obtained using this technique are reported.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

P. Tonutti (1), G. B. Tornielli (2), G. Cargnello (3)

(1) Department of Environmental Agronomy and Crop Science – University of Padova – Sede di Conegliano Viale XXVIII Aprile, 14, 31015 Conegliano – Treviso (Italy)
(2) CIVE – University of Verona Via della Pieve 64, 37029 San Floriano-Verona (Italy)
(3) SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura Viale XXVIII Aprile, 26 31015 Conegliano – Treviso (Italy)

Contact the author

Keywords

Over-ripening, dehydration techniques, post-harvest, organoleptic quality, sensory evaluation

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Wine without added SO2: Oxygen impact and color evolution during red wine aging

SO2 play a major role in wine stability and evolution during its aging and storage. Winemaking without SO2 is a big challenge for the winemakers since the lack of SO2 affects directly the wine chemical evolution such as the aromas compounds as well as the phenolic compounds. During the red wine aging, phenolic compounds such as anthocyanin, responsible of the red wine colour, and tannins, responsible of the mouthfeel organoleptic properties of wine, evolved quickly from the winemaking process to aging [1]. A lot of new interaction and molecules occurred lead by oxygen[2] thus the lack of SO2 will induce wine properties changes. Nowadays, the phenolic composition of the wine without added SO2 have not been clearly reported.

Petrolomics-derived data interpretation to study acetaldehyde-epicatechin condensation reactions

During red wine ageing or conservation, color and taste change and astringency tends to reduce. These changes result from reactions of flavan-3-ols and/or anthocyanins among which condensation reactions with acetaldehyde are particularly important. The full characterization of these reactions has not been fully achieved because of difficulties in extracting and separating the newly formed compounds directly from wine. Model solutions mimicking food products constitute a simplified medium for their exploration, allowing the detection of the newly formed compounds, their isolation, and their structure elucidation.

Exploring resilience and competitiveness of wine estates in Languedoc-Roussillon in the recent past: a multi-level perspective

The Languedoc-Roussillon wineries are facing a decline in wine yields particularly PGI yields due to many factors. Climate change is just ones, but is expected to increase in the future. There is also structurally a large heterogeneity of yield profiles among terroirs, varieties and strategies. This work investigates the link between yield, competitiveness and resilience to explore how resilient winegrowers have been in the recent past. To this end two approaches have been combined; (i) an accountancy database analysis at estate scale and (ii) municipality level competitiveness analysis. A new resilience indicator that characterizes the capacity of an estate to absorb yield variation is also defined. The FADN database between 2000 and 2018 of ex-Languedoc-Roussillon (France) and other data are used to analyse the current situation and the past evolution of competitiveness and resilience by type of estate (type of farm: PGI and/or PDO & type of commercialization: bulk and/or bottles). The net margin, which defines competitiveness, is not correlated to yield for all types but depends on the type of commercialization and the level of specialisation. The resilience indicator shows that the net margin of estates specialized in PGI is particularly sensitive to yield declines. We also show that price evolutions seem to compensate the effect of yield losses for the majority of types. Municipality scale analysis shows the links between local pedoclimate, yield, commercialization strategies and price. Overlapping a PDO with a PGI does not always increase a municipality’s PGI competitiveness. It is difficult to make links between causes and effects due to the complexity of the wine production system. Production diversification may be a solution. Resorting to the two level of analysis helps resolving the data gap that is necessary to explore the links between yield and economic performance of the wine estates in the long term.

Identification of the agronomical and landscape potentialities in Côtes du Rhône area (France)

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.19.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...

WINE LEES AS A SOURCE OF NITROGEN FOR OENOCOCCUS OENI TO IMPROVE MALOLACTIC FERMENTATION PERFORMANCE

Malolactic fermentation (MLF) is a desired process in red and acidic white wines, after alcoholic fermentation (AF), carried out by the lactic acid bacterium (LAB) Oenococcus oeni. The advantages are an increase of pH, microbiological stabilization and organoleptic improvement of the final wine. However, the presence of stress factors such as ethanol, low pH, high total SO2, lack of nutrients and presence of inhibitors, could affect the successful completion of MLF [1]. Changes in amino acid composition and deficiencies in peptides after AF, showed that MLF can be delayed, signaling its importance for bacterial growth and L-malic acid degradation during MLF [2].