Terroir 2004 banner
IVES 9 IVES Conference Series 9 The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

The effect of terroir zoning on pomological, chemical and aromatic composition of Muscat d’Alexandrie grapevine variety cultivated in Tunisia

Abstract

[English version below]

La composition du raisin de la variété Muscat d’Alexandrie a été étudiée dans trois terroirs différents au Nord-Est de la Tunisie (RafRaf, Baddar et Kelibia).
Des échantillons de raisins ont été récoltés à maturité industrielle durant les saisons 2001 et 2002 dans les trois régions citées. Les paramètres pomologiques (poids moyen de la grappe et de la baie) et physico-chimiques (acidité totale, pH, densité, degré Brix et indice des polyphénols totaux) ont été immédiatement mesurés. Les composés libres et liés de l’arôme ont été analysés par chromatographie en phase gazeuse (C.P.G.) équipée d’un Détecteur à Flamme d’Ionisation (FID).
Les caractéristiques pomologiques et physico-chimiques n’ont pas subi une modification importante dans les différentes régions étudiées. Cependant, l’effet significatif du terroir se reflète essentiellement sur la composition de la baie en arôme. Bien que la somme des trois monoterpénols (MT; linalol+nérol+géraniol) a toujours été comprise dans le seuil de perception de la note muscatée, une nette différence au niveau de leur distribution a été constatée. Linalol et geraniol sont les composés d’arôme les plus sensibles aux changements des conditions du milieu.
Selon l’année (2001 et 2002) et le terroir, la fraction liée des composés d’arôme est de 4 à 6 fois plus importante que la fraction libre.

The effect of terroir zoning on the pomological, chemical and aromatic composition has been studied on the Muscat d’Alexandrie grapevine variety over two years 2001 and 2002. This variety was cultivated in three terroirs (RafRaf, Baddar and Kelibia) in the North-East of Tunisia.
Muscat d’Alexandrie from each terroir was randomly harvested at commercial maturity, in 2001 and 2002. Pomological parameters (bunch and berry mean weights) and chemical characteristics (total acidity, pH, density, Brix degree and total polyphenol index) have been immediately measured. The aroma free and bound fractions were analyzed using CPG equipped by FID detector.
The results showed that the pomological and chemical parameters were the less affected by the terroir zoning. Nevertheless, zoning affected mainly the aromatic composition of the berry. Although, the global value MT of the free monoterpenols (linalool+nerol+geraniol) was included in the Muscat aroma perception interval, the distribution of the concentration of each changed from region to another. Indeed, linalool and geraniol compounds were the most sensitive to environmental changes and consequently terroirs.
During 2001 and 2002 and according to the terroir, the glycosidically bound fraction has been increased 4 to 6 times.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Souid I. (1), Zemni H. (1), Ben Salem A. (1) , Fathalli N. (1) , Mliki A. (1), Hammami M. (2), Hellali R. (3) and A. Ghorbel(1)

(1) Laboratoire de Physiologie Moléculaire de la Vigne. Institut National de Recherche Scientifique et Technique. BP 95. Hammam Lif 2050. Tunisia
(2) Laboratoire de Spectrométrie de Masse. Faculté de Médecine de Monastir 5019
(3) Laboratoire d’Arboriculture Fruitière. Institut National Agronomique de Tunis. 43 Av. Charles Nicolle. 1082 Cité Mahrajène. Tunis

Contact the author

Keywords

Muscat d’Alexandrie, jus de raisin, arôme, terroir, Tunisie

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Diagnosis of soil quality and evaluation of the impact of viticultural practices on soil biodiversity in a vineyard in southwestern France

Viticulture is facing two major changes – climate change and agroecological transition. In both cases, soil quality is seen as a lever to move towards a more sustainable viticulture. However, soil biological quality is little considered in the implementation of viticultural practices. Gascogn’Innov (2017-2022) is an Operational Group funded by the European Innovation Partnership for Agriculture. As such, it brings together winegrowers from the south-west of France, scientists, advisors and technicians, around a project focused on viticultural soil biological functioning and the design of technical routes more respectful toward soil heritage. To achieve this, the project aims to acquire references on the impact of viticultural practices on soil biology from a dynamic way, and to test a methodology to integrate information provided by the soil bioindicators to manage farming systems. A set of indicators of soil biological quality are evaluated in the project: microorganisms (bacteria and fungi abundance and diversity), fauna (abundance and diversity of nematodes and earthworms), physico-chemical characteristics, soil structure assessment and degradation rate of organic matter. Based on a network of 13 plots that have been subject to an initial diagnosis in 2017, several agronomical practices to restore soil fertility are experimented to redesign the cropping system (for instance plant cover, organic matter inputs, reduction of herbicides, mineral fertilizers). System redesign was made in collaboration by winegrowers and an interdisciplinary group of experts (agronomists, biologists). Several indicators are measured on vine and soil at each vintage to assess vine health and productivity. At the end of the project (2021), a final diagnosis was carried out. Gascogn’Innov allowed to create a regional database on the quality of wine-growing soils, which permitted to evaluate the effect of practices according to soil types. Especially, decreasing the intensity of tillage and increasing the duration and diversity of grass coverage tends to increase the abundance of all the organisms studied. This project confirmed the value of soil biological quality indicators to drive the sustainability of practices, but also highlighted the key-role of expertise, in both agronomy and soil biology, to help winegrowers understand and appropriate their soil quality diagnoses.

The bottleneck/cork interface: A key parameter for wine aging in bottle

The shelf life of wine is a major concern for the wine industry. This is particularly true for wines intended for long cellaring, which are supposed to reach their peak after an ageing period ranging from a few months to several years, or even decades. Low, controlled oxygen inputs through the closure system are generally necessary for the wine to evolve towards its optimum organoleptic characteristics. Our previous studies have already shown that the interface between the cork and the bottleneck plays a crucial role in the transfer of oxygen into the bottled wine.

Monitoring of grapevine stem potentials with an embedded microtensiometer

Vine water status is a crucial determinant of vine growth, productivity, fruit composition and terroir or wine style; therefore, regulating water stress is of great importance. Since vine water status depends on both soil moisture and aerial environment and is very temporally dynamic, direct measurement of vine water potential is highly preferable. Current methods only provide limited data. To regulate vine water status it is critical to monitor vine water status to be able to: (1) measure vine water status to predict the effect of water stress on the overall vineyard performance and fruit quality and optimize harvest management and wine-making (2) properly regulate the water status to impose for a desired fruit quality or style (3) determine if water management has reached the desired stress level.

Influence of mixed fermentations with Starmerella bacillaris and Saccharomyces cerevisiae on malolactic fermentation by Lactobacillus plantarum and Oenococcus oeni in wines

Over the last years, the potential use of non-Saccharomyces yeasts to modulate the production of target metabolites of oenological interest has been well recognized. Among non-Saccharomyces yeasts, Starmerella bacillaris (synonym Candida zemplinina) is considered one of the most promising species to satisfy modern market and consumers preferences due to its peculiar characteristic (enhance glycerol and total acidity contents and reduce ethanol production). Mixed fermentations using Starm. bacillaris and Saccharomyces cerevisiae starter cultures represent a way to modulate metabolites of enological interest, taking advantage of the phenotypic specificities of the former and the ability of the latter to complete the alcoholic fermentation. However, the consumption of nutrients by these species and their produced metabolites may inhibit or stimulate the growth (and malolactic activity) of lactic acid bacteria (LAB).

Generation of radicals in wine by cavitation and study of their interaction with metals, phenols and carboxylic acids

High-power ultrasounds have been related to an accelerated aging of wines, an effect that has been associated to the formation of radical species caused by the cavitation phenomenon [1]. This phenomenon consists of the formation of bubbles in the liquid medium that, when they collapse, cause high-pressure hot spots and temperatures of up to 4800 k [2], notably increasing the reactivity in the medium.