Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of climate/soil of different zones/terroirs on grape characteristics

The role of climate/soil of different zones/terroirs on grape characteristics

Abstract

According to the different concern of the ‘traditional’ and the ‘new’ wine-producing Countries, a variable importance is recognized to the climate/soil and to grapevine cultivars as factors affecting the wine quality. However, the viticultural experience can state that, within each area, climate and soil plays an incontestable role in affecting grape quality, and consequently wine quality, as well as the genetic characteristics of the cultivar.
Zoning different areas is an interesting tool to study and characterize the ecological, geological, ecophysiological and biological factors which interact with the grapevine to determine the wine quality and that can be summarized by the French word ‘terroir’. The aim is to delimit and individuate homogeneous territories that can give homogeneous, identifiable, corresponding, enological products.
Actually, different approaches may be pursued in the ‘zoning studies’: historical, bioclimatic, pedological, varietal or multi-disciplinary. Many experiences in zoning viticultural areas have been done, particularly in the traditional viticultural areas, such as the DOC and DOCG areas in Europe (in particular France and Italy). Different soil types, and microclimatic zones, may influence with the presence of grape phenol precursors, and then the wine structure and aroma. Some examples illustrate the variety-ambient interaction as the basic binomial for grape quality as well as for wines characterized by specific and identifiable attributes.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

V. Novello and L. de Palma

1) Dipartimento di Colture Arboree, Via Leonardo da Vinci 44, I 10095 Grugliasco (TO), Italy
2) Dip. Scienze Agroambientali, Chimica e Difesa Vegetale, Via Napoli 25, I 71100 Foggia, Italy

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Exploring the impact of NPR3 gene silencing on the interaction between grapevine and mycorrhizal fungi through genome editing

One of the main plant defence mechanisms is the Systemic Acquired Resistance (SAR) mediated by Salicylic Acid (SA). This is a heightened and broad-spectrum immune response initiated by the exposure to pathogens, inducing resistance not only in the infected site, but also throughout the entire plant. It was demonstrated that plant immune system can be regulated by two classes of SA receptors: NONEXPRESSOR OF PR GENES 1 (NPR1) and NPR1-LIKE PROTEIN 3 and 4 (NPR3/NPR4). While NPR1 is required for SA-induction followed by the expression of pathogenesis-related (PR) protein and resistance against pathogens, NPR3/NPR4 serve as transcriptional co-repressors of SA-responsive genes.

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

Characterization and application of silicon carbide (SiC) membranes to oenology

After fermentations, the crude wine is a turbid medium not accepted by the consumer therefore, it needs to be filtered

Soave beyond the zonation

In a previous zoning program (1998-2002), climatic and pedological factors were able to distinguish 14 terroir within the Soave DOC area where wine characteristics are well recognizable. Nevertheless, in the past vinegrowers identified several vineyards where a better quality of the grapes and wines could be obtained. So, « beyond the zonation » will aim to suggest a new methodology to characterise the Cru, starting with 15 vineyards that were selected in the Soave Classico DOC area. In the year 2005, a meteorological station was positioned in each vineyard and temperature data were collected; because of the limited area of investigation, only 3 rain sensors were set up.

Plant nitrogen assimilation and partitioning as a function of crop load

Aims: The optimization of nitrogen use efficiency (NUE, i.e. uptake, assimilation and partitioning) is a solution towards the sustainable production of premium wines, while reducing fertilization and environmental impact. The influence of crop load on the accumulation of N compounds in fruits is still poorly understood. The present study assesses the impacts of bunch thinning on NUE and the consequences on the free amino N (FAN) profile in fruits.