Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Abstract

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves. We tried to estimate the possible effect of the foliar applied copper on leaf photosynthesis (P), transpiration (F), stomatal conduction (g) and chlorophyll (Chl a+b) content in vine cv.’Merlot’ grown in Slovenia, where copper fungicides are commonly used in vineyards’ management.
The measurements were carried out on eight years old vine cv. ‘Merlot’, grafted onto SO4. Vines were sprayed with Bordeaux mixture, at two intensities: conventional ‘K’ (12 kg B.m. ha-1) and integrated pest ‘I’ (3 kg B.m. ha-1) management and the control ‘C’ vines were sprayed with non-copper fungicides. The photosynthetic and transpiration activities of the fully developed leaves were measured with a portable measuring system Li-6400 (Licor), at PFD of 1000 µmol m-2 s-1, at 360 (A360) ad 2000 (A2000) µmol CO2 m-2 s-1 and at controlled temperature and relative humidity.
The seasonal decrease of photosynthetic and transpiration activities was observed. The highest P activity 9,82 µmol CO2 m-2 s-1 was obtained on I vines, and the lowest P 9,04 µmol CO2 m-2 s-1 on C vines. The highest transpiration 2,59 mmol H2O m-2 s-1 was measured on C vines, and the lowest 2,31 mmol H2O m-2 s-1 on K vines. The highest stomatal conduction 0,141 mol CO2 m-2 s-1 was measured on C vines, and lowest 0,130 mol CO2 m-2 s-1 on K vines. The lowest Chl a+b content 3,33 mg g-1 dw was determined in C leaves and highest 4,77 mg g-1 dw in I leaves. The Cu-fungicide influenced physiological parameters of vine leaves (difference not statistical significant).

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Rusjan (1), D. Vodnik (2), Z. Korosec-Koruza (1)

(1) University of Ljubljana, Biotechnical Faculty, Chair of Viticulture, Jamnikarjeva 101, SI-1000,
Ljubljana, Slovenia
(2) University of Ljubljana, Biotechnical Faculty, Chair of Applied Botany and Plant Physiology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Identifying physiological and genetic bases of grapevine adaptation to climate change with maintained quality: Genome diversity as a driver for phenotypic plasticity  (‘PlastiVigne’ project)

In the face of climate change, new grapevine varieties will have to show an adaptive phenotypic plasticity to maintain production with erratic water resources, and still ensure the quality of the final product. Their selection requires a better knowledge of the genetic basis of those traits and of the elementary processes involved in their variability. ‘PlastiVigne’, an emblematic project of the Vinid’Occ key challenge, funded by the Occitanie Region (France), tackles this issue with innovative genomic and physiological tools implemented on a unique panel of grape genetic resources representing the genetic diversity of Vitis vinifera. A graph-pangenome is developed from a representative set of high-quality genomes to study the extent and impact of structural genome variations and chromosomal rearrangements in the rapid adaptation capacity of grapevine.

The fundamental role of pH in the anthocyanins chemical behavior and in their extractability during winemaking

The chemical behavior of anthocyanins is considerably affected even by slight pH variations with impor-tant implications for the winemaking as well as for the wine conservation

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Variabilité spatiale du gel printanier dans le vignoble champenois : application au zonage climatique

In the Champagne vineyards, spring frosts are the cause of significant variations in the volume of the harvest which are very penalizing for the trade. This variability is reflected both in time (years without frost alternating with years with severe frosts) and in space. Certain sectors of the vineyard are in fact statistically more susceptible to frost than others, but each year no municipality can consider itself immune to this climatic accident. The objective of the study is precisely to analyze the spatial distribution of frost and to determine its main mechanisms, linked to the topography of the hillsides, their orientation but also to regional meteorological variables.

CHEMICAL DRIVERS OF POSITIVE REDUCTION IN NEW ZEALAND CHARDONNAY WINES

According to winemakers, wine experts and sommeliers, aromas of wet stone, mineral, struck match and flint in white wines styles, such as those produced from Vitis vinifera L. cv. Chardonnay, are considered to be hallmarks of positive reduction.1,2 In recent years, the production of Chardonnay styles defined by aroma characteristics related to positive reduction has become more desirable among wine experts and consumers. The chemical basis of positive reduction is thought to originate from the concentration of specific volatile sulfur compounds (VSCs), including methanethiol (MeSH) imparting mineral and chalk notes,3 and benzenemethanethiol (BMT) responsible for struck match and flint.1,4