Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Abstract

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves. We tried to estimate the possible effect of the foliar applied copper on leaf photosynthesis (P), transpiration (F), stomatal conduction (g) and chlorophyll (Chl a+b) content in vine cv.’Merlot’ grown in Slovenia, where copper fungicides are commonly used in vineyards’ management.
The measurements were carried out on eight years old vine cv. ‘Merlot’, grafted onto SO4. Vines were sprayed with Bordeaux mixture, at two intensities: conventional ‘K’ (12 kg B.m. ha-1) and integrated pest ‘I’ (3 kg B.m. ha-1) management and the control ‘C’ vines were sprayed with non-copper fungicides. The photosynthetic and transpiration activities of the fully developed leaves were measured with a portable measuring system Li-6400 (Licor), at PFD of 1000 µmol m-2 s-1, at 360 (A360) ad 2000 (A2000) µmol CO2 m-2 s-1 and at controlled temperature and relative humidity.
The seasonal decrease of photosynthetic and transpiration activities was observed. The highest P activity 9,82 µmol CO2 m-2 s-1 was obtained on I vines, and the lowest P 9,04 µmol CO2 m-2 s-1 on C vines. The highest transpiration 2,59 mmol H2O m-2 s-1 was measured on C vines, and the lowest 2,31 mmol H2O m-2 s-1 on K vines. The highest stomatal conduction 0,141 mol CO2 m-2 s-1 was measured on C vines, and lowest 0,130 mol CO2 m-2 s-1 on K vines. The lowest Chl a+b content 3,33 mg g-1 dw was determined in C leaves and highest 4,77 mg g-1 dw in I leaves. The Cu-fungicide influenced physiological parameters of vine leaves (difference not statistical significant).

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Rusjan (1), D. Vodnik (2), Z. Korosec-Koruza (1)

(1) University of Ljubljana, Biotechnical Faculty, Chair of Viticulture, Jamnikarjeva 101, SI-1000,
Ljubljana, Slovenia
(2) University of Ljubljana, Biotechnical Faculty, Chair of Applied Botany and Plant Physiology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Litchi tomato as a fumigation alternative in Washington state wine grape vineyards

The northern root-knot nematode (Meloidogyne hapla) is one of the most prevalent plant-parasitic nematodes affecting Washington State Vitis vinifera vineyards. This nematode induces small galls on roots, restricting water and nutrient uptake. In new vineyards this can impede establishment. In existing vineyards, it can exacerbate decline in chronically stressed vines. While preplant fumigation is a common strategy for M. hapla management, its efficacy is temporary and relies on broad-spectrum chemicals that undergo frequent regulatory scrutiny. The trap crop litchi tomato (Solanum sisymbriifolium) showed promise in reducing plant-parasitic nematode densities in potato. This prompted field greenhouse experiments to evaluate its potential to reduce M. hapla in V. vinifera.

Influence of nitrogen supply on colorimetric parameters of Lugana wines

AIM: Color is one of the main qualitative parameters of a wine. As a matter of fact, immediately after having opened a bottle of wine, color, even before aroma and taste, is the first sensorial parameter to be evaluated by the consumer It can change according to various factors depending on the characteristics of the grapes or on the different production and storage processes. This study aims to evaluate the color differences on Lugana wines that are fermented with different yeast and nitrogen supply.

Transcriptomic analyses of wild Vitis species under drought conditions for next-generation breeding of grapevine rootstocks

Drought is one of the main challenges for viticulture in the context of climate change. Selecting drought-tolerant plant material can be an effective strategy for a sustainable viticulture.

The “resources profile®”: a relevant decision and support system for adapting viticultural practices to soils agronomic properties and limiting their environmental impacts

Soil is a three-dimensional complex system, which constitutes a major component of Terroir. Soil characteristics strongly influence vine development, grape oenological potentialities and thus wine quality and style.

Unexpected relationships between δ13C, water deficit, and wine grape performance

Water nutrition is crucial for wine grape performance. Thus soil investigation aims at characterizing spatial and temporal variability of available water. A possible strategy