Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Influence of spraying of copper fungicides on physiological parameters of Vitis vinifera L. Cv. ‘Merlot’

Abstract

Vine downy mildew is one of the most frequent diseases in intensive vineyards. Bordeaux mixture (B.m.), in order to control the disease has been applied onto vineyards since the end of the 19th century. The intensive use of Cu-fungicides could influence the physiology of grapevine. It is also possible that high amounts of foliar Cu sprays trigger stress responses in vine leaves. We tried to estimate the possible effect of the foliar applied copper on leaf photosynthesis (P), transpiration (F), stomatal conduction (g) and chlorophyll (Chl a+b) content in vine cv.’Merlot’ grown in Slovenia, where copper fungicides are commonly used in vineyards’ management.
The measurements were carried out on eight years old vine cv. ‘Merlot’, grafted onto SO4. Vines were sprayed with Bordeaux mixture, at two intensities: conventional ‘K’ (12 kg B.m. ha-1) and integrated pest ‘I’ (3 kg B.m. ha-1) management and the control ‘C’ vines were sprayed with non-copper fungicides. The photosynthetic and transpiration activities of the fully developed leaves were measured with a portable measuring system Li-6400 (Licor), at PFD of 1000 µmol m-2 s-1, at 360 (A360) ad 2000 (A2000) µmol CO2 m-2 s-1 and at controlled temperature and relative humidity.
The seasonal decrease of photosynthetic and transpiration activities was observed. The highest P activity 9,82 µmol CO2 m-2 s-1 was obtained on I vines, and the lowest P 9,04 µmol CO2 m-2 s-1 on C vines. The highest transpiration 2,59 mmol H2O m-2 s-1 was measured on C vines, and the lowest 2,31 mmol H2O m-2 s-1 on K vines. The highest stomatal conduction 0,141 mol CO2 m-2 s-1 was measured on C vines, and lowest 0,130 mol CO2 m-2 s-1 on K vines. The lowest Chl a+b content 3,33 mg g-1 dw was determined in C leaves and highest 4,77 mg g-1 dw in I leaves. The Cu-fungicide influenced physiological parameters of vine leaves (difference not statistical significant).

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

D. Rusjan (1), D. Vodnik (2), Z. Korosec-Koruza (1)

(1) University of Ljubljana, Biotechnical Faculty, Chair of Viticulture, Jamnikarjeva 101, SI-1000,
Ljubljana, Slovenia
(2) University of Ljubljana, Biotechnical Faculty, Chair of Applied Botany and Plant Physiology, Jamnikarjeva 101, SI-1000, Ljubljana, Slovenia

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Screening of phenolic compounds and antioxidant potential of grapes, wine and grape by-products

Polyphenols, bioactive secondary metabolites abundantly found in various grapevine components such as stalks, skins, and seeds, have attracted considerable attention in recent decades due to their potential health benefits. These compounds, including flavan-3-ols, flavanols, flavones, and stilbenes, are known for their antioxidant and anti-inflammatory properties.

Influence of light exclusion on anthocyanin composition in ‘Cabernet sauvignon’

The aim of this study was to determine how artificial shading influenced berry development and anthocyanin accumulation in ‘Cabernet sauvignon’. Opaque polypropylene boxes were applied to grape bunches over three different developmental stages.

The role of protein-phenolic interactions in the formation of red wine colloidal particles

Colloids play a crucial role in red wine quality and stability, yet their composition and formation mechanisms remain poorly understood.

AOC Saint-Romain, Hautes-Côtes-de-Beaune, Burgundy: analysis of a “terroir”

The aim of this study is to provide an overview of the terroir of Saint-Romain, Burgundy, based on three main information sources: official data relating to vines (CVI), soil cartography and a survey of winegrowers’ practices.

Red wine substituted esters involved in fruity aromatic expression: an enantiomeric approach to understand their sensory impact and their pathway formation

Among red wines ethyl esters, those from short hydroxylated and branched-chain aliphatic acids constitute a family with a particular behavior and sensory importance. They have been previously discussed in the literature [1] and recent studies have established that some of them were strongly involved in of red wines’ fruity aroma [2]. As some among them have an asymmetrical carbon atom, it seemed important to separate their different enantiomers to obtain an accurate assessment of their organoleptic impact. Three chiral esters have been identified, presenting alkyl and/or hydroxyle substituants: ethyl 2-hydroxy-4-methylpentanoate, ethyl 2-methylbutanoate, and ethyl 3-hydroxybutanoate.