Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Abstract

[English version below]

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales. Pour développer l’essai on a appliqué les suivantes densités de plantation: 2645 ceps/ha (2.70 m x 1.40 m), “basse densité”, et 3953 ceps/ha (2.20 m x 1.15 m), “haute densité”. L’essai experimental a été situé à Valladolid (Castilla et León, Espagne). Les ceps ont été plantés en 1993, sur porte-greffe 110R, et ont été conduites en espalier, menés en cordon Royat bilateral et taillés en coursons, ayant été cultivés avec une dose d’irrigation du 20% ETo depuis juillet jusqu’à septembre.
L’augmentation de la densité de plantation a permis d’apprécier une diminution de la production de matière sèche et du rendement, malgré que le potentiel hydrique foliaire de base n’a pas montré toujours que les ceps avaient un état physiologique plus mauvais. L’augmentation de la densité de plantation a provoqué une réduction significative du poids de la baie et un accroissement de la concentration de sucres, le pH (en relation avec une plus grande concentration de K), l’acidité totale et la concentration polyphénolique du moût. Dans les conditions de l’essai (zone de la Vallée du Douro) et avec une dose d’irrigation modérée (20% ETo), l’augmentation de la densité de plantation a provoqué une amélioration de la qualité du raisin de Tempranillo en ce qui concerne à maturation et concentration polyphénolique, bien que le vignoble a eu une réduction de la production du raisin.

The purpose of the study is to evaluate the influence of vine spacing on plant water status (leaf water potential), productivity (dry matter and yield), and fruit quality (berry size, ºBrix, pH, total acidity, polyphenolic composition) of Tempranillo grapevine in the Valley of Duero river, at the A.O. Cigales. Vine spacing treatments applied were: 2645 vines per ha (2.70 m x 1.40 m), Low density, and 3953 vines per ha (2.20 m x 1.15 m), High density.
The experimental trial was located in Valladolid (Castilla y Leon, Spain). The 12-year-old vines grafted onto 110 Richter rootstock were vertically trellis trained, through a bilateral cordon, and spur pruned. The experimental vineyard was irrigated by means of doses of 20% ETo from July to September.
The increase of the number of plants per hectare has provoked a reduction of dry matter production and yield, in spite of the fact that predawn leaf water potential has not always shown the different water status of vines. The reduction of vine spacing corresponding to the higher plant density has provoked a significant reduction of berry size and the increase of the values of ºBrix, pH (related to higher K accumulation), titratable acidity and phenolic concentration. The increase of the number of plants per hectare has affected the production and the quality of Tempranillo grapevine in the conditions of the zone (Valley of the Duero river) and the soil of the experimental trial with a moderate doses of irrigation. The main effect of the increase has been the partial improvement of the fruit quality, related to sugar and phenolic concentrations, with the inconvenient of the yield reduction.

 

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.L. Asenjo, MªV. Alburquerque, J.A. Rubio, J. Yuste

Instituto Tecnológico Agrario de Castilla y León. Valladolid. Spain

Contact the author

Keywords

Acidity, berry size, dry matter, leaf water potential, polyphenols, soluble solids

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

An innovative 21st century frost alert system for an age-old viticulture challenge

Damage during the budbreak period due to spring season frosts remains one of the most significant weather-related challenges to viticulture around the world. For example, in 2021, €2bn of estimated damage was reported in france while >50% of vineyards were badly affected in the UK in 2017.

Increasing microalgae biomass feedstock by valorizing wine gaseous and liquid residues

Global warming due to greenhouse gases (GHG) has become a serious worldwide concern. The new EU Green Deal aims t0 achieve GHG emissions reduction by at least 55% by 2030 and a climate neutral EU economy by 2050. The deal strongly encourages GHG reducing measures at local, national and European levels. The REDWine project will demonstrate the technical, economic and environmental feasibility of reducing by, at least, 31% of the CO2 eq. emissions produced in the winery industry value chain by utilizing biogenic fermentation CO2 for microalgae biomass production

Investigating the impact of grape exposure and UV radiations on rotundone in Vitis vinifera L. Tardif grapes under field trial conditions

Rotundone is the main aroma compound responsible for peppery notes in wines whose biosynthesis is negatively affected by heat and drought. Through the alteration of precipitation regime and the increase in temperature during maturation, climate change is expected to affect wine peppery typicality. In this context there is a demand for developing sustainable viticultural strategies to enhance rotundone accumulation or limit its degradation. It was recently proposed that ultraviolet (UV) radiations could stimulate rotundone production. The aim of this study was to investigate under field trial conditions the impact of grape exposure and UV treatments on rotundone in Vitis vinifera L. Tardif, an almost extinct grape variety from south-west France that can express particularly high rotundone levels. Four different treatments were compared in 2021 to a control treatment using a randomised complete block design with three replications per treatment. Grape exposure was manipulated through early or late defoliation. Leaf and laterals shoots were removed at Eichorn Lorenz growth stages 32 or 34 on the morning-sun side of the canopy. During grape maturation, UV radiations were either reduced by 99% by installing UV radiation-shielding sheets, or applied four times using the Boxilumix™ non thermal device (Asclepios Tech, Tournefeuille) with the aim of activating plant signalling pathway. Loggers displayed in solar radiation shields were used to assess the effect of such shielding sheets on air temperature within the bunch zone. The composition of grapes subjected to these treatments will be soon analysed for their rotundone content and basic classical laboratory analyses. Grapes will be harvested to elaborate wines under standardized small-scale vinification conditions (60kg) that will be assessed by a trained sensory panel.

How to make a mineral wine? Producers’ representations vs. scientific data

In this video recording of the IVES science meeting 2023, Jordi Ballester (Centre des sciences du goût et de l’alimentation, CNRS, INRAE, Institut Agro, Université Bourgogne Franche-Comté, Dijon, France) speaks on how to make a mineral wine, producers’ representations vs. scientific data. This presentation is based on an original article accessible for free on OENO One.

Biochemical responses of crimson seedless (Vitis vinifera) grapevines to altered micro climatic conditions and different water treatments in the Breede River Valley of South Africa

The South African Table grape industry has to expand to new markets with high quality niche products, but limited water availability threatens sustainable production. To overcome this challenge and to obtain high-quality products for the new markets, require constant technological advancement. Currently, limited available scientific information about growth balances and physiology and especially grape quality parameters, hinders technological advancement and thus efficient regulatory management of the morphological, chemical, and pathological status of table grapes, especially in response to abiotic factors.