Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Influence of vine spacing on water status, productivity, yield and must composition in Tempranillo grapevine under Duero Valley zone conditions

Abstract

[English version below]

L’objectif de cette étude est analyser l’influence de la densité de plantation sur l’état hydrique (potentiel hydrique), le comportement productif (matière sèche et rendement) et la expression qualitative (poids de baie, degrée Brix, pH, acidité totale, concentration polyphénolique) de la varieté Tempranillo dans la Vallée du Douro, à l’A.O. Cigales. Pour développer l’essai on a appliqué les suivantes densités de plantation: 2645 ceps/ha (2.70 m x 1.40 m), “basse densité”, et 3953 ceps/ha (2.20 m x 1.15 m), “haute densité”. L’essai experimental a été situé à Valladolid (Castilla et León, Espagne). Les ceps ont été plantés en 1993, sur porte-greffe 110R, et ont été conduites en espalier, menés en cordon Royat bilateral et taillés en coursons, ayant été cultivés avec une dose d’irrigation du 20% ETo depuis juillet jusqu’à septembre.
L’augmentation de la densité de plantation a permis d’apprécier une diminution de la production de matière sèche et du rendement, malgré que le potentiel hydrique foliaire de base n’a pas montré toujours que les ceps avaient un état physiologique plus mauvais. L’augmentation de la densité de plantation a provoqué une réduction significative du poids de la baie et un accroissement de la concentration de sucres, le pH (en relation avec une plus grande concentration de K), l’acidité totale et la concentration polyphénolique du moût. Dans les conditions de l’essai (zone de la Vallée du Douro) et avec une dose d’irrigation modérée (20% ETo), l’augmentation de la densité de plantation a provoqué une amélioration de la qualité du raisin de Tempranillo en ce qui concerne à maturation et concentration polyphénolique, bien que le vignoble a eu une réduction de la production du raisin.

The purpose of the study is to evaluate the influence of vine spacing on plant water status (leaf water potential), productivity (dry matter and yield), and fruit quality (berry size, ºBrix, pH, total acidity, polyphenolic composition) of Tempranillo grapevine in the Valley of Duero river, at the A.O. Cigales. Vine spacing treatments applied were: 2645 vines per ha (2.70 m x 1.40 m), Low density, and 3953 vines per ha (2.20 m x 1.15 m), High density.
The experimental trial was located in Valladolid (Castilla y Leon, Spain). The 12-year-old vines grafted onto 110 Richter rootstock were vertically trellis trained, through a bilateral cordon, and spur pruned. The experimental vineyard was irrigated by means of doses of 20% ETo from July to September.
The increase of the number of plants per hectare has provoked a reduction of dry matter production and yield, in spite of the fact that predawn leaf water potential has not always shown the different water status of vines. The reduction of vine spacing corresponding to the higher plant density has provoked a significant reduction of berry size and the increase of the values of ºBrix, pH (related to higher K accumulation), titratable acidity and phenolic concentration. The increase of the number of plants per hectare has affected the production and the quality of Tempranillo grapevine in the conditions of the zone (Valley of the Duero river) and the soil of the experimental trial with a moderate doses of irrigation. The main effect of the increase has been the partial improvement of the fruit quality, related to sugar and phenolic concentrations, with the inconvenient of the yield reduction.

 

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.L. Asenjo, MªV. Alburquerque, J.A. Rubio, J. Yuste

Instituto Tecnológico Agrario de Castilla y León. Valladolid. Spain

Contact the author

Keywords

Acidity, berry size, dry matter, leaf water potential, polyphenols, soluble solids

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Fast, and full microbiological wine analysis using triple cellular staining.

We propose here a brand new large routine microbiological analysis method intended for oenology, in flow cytometry, using high performance equipment and triple selective cell staining, activated by fluorescence. The results and practical applications of the method are presented: Brettanomyces (Dekkera) Monitoring, fermentations monitoring, bottling and enological practices monitoring.The method allow a complete new microbiological tool for wine industry.The method has been accredited ISO 17025 in our laboratories.

Autochthonous yeasts: a microbiological tool to exalt the quality of the apulian sparkling wine

The selection, characterization, and recruitment of autochthonous yeast strains to drive the alcoholic fermentation process is a highly researched practice because it allows the differentiation of the organoleptic properties of wines, assuring process standardization, reducing fermentation times and improving the quality and safety of the final products [1, 2]. Sparkling wines are “special wines” obtained by secondary fermentation of the base wine. ​In the traditional method (Champenoise method), the re-fermentation takes place in the bottle after the addition to the base wine of the so-called tirage solution. This step, also known as prise de mousse, is followed by an aging period characterized by the release of compounds from the yeast cells that affect the organoleptic properties of the final product. The use of autochthonous yeasts as starter cultures for secondary fermentation is one of the recent innovations proposed to enhance and differentiate these wines’ sensory quality [3,4]. Apulia is the second Italian wine-producing region, and its productive chain is now going through a qualitative evolution by implementing the employment of innovative approaches to exalt the peculiar properties of regional wines.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Control of grapevine virus diseases in collections and at the stages of propagation in Ukraine

The principles of virological control on different types of grapevine collections and plantations are summarized.

Tomatoes and Grapes: berry fruits with a (bright) biotech future?

Tomatoes and Grapes are berries that are genetically related and therefore at least partially their developmental pathways leading to a fleshy fruit should share some of the components. In a sense knowledge obtained from the model plant tomato could be useful for grape and conversely the more amenable tomato can be used to test some hypothesis that would be difficult to obtain in grape. Research in my lab and other labs have led to a better understanding of the molecular genetics mechanisms underlying fruit development and ripening in tomato and more specifically those related to metabolite accumulation that may lead to changes in fruit nutritional and flavor composition. This research has involved the use of genetic variability in natural population, but also biparental population and genetically engineered lines that are easy to develop in tomato tomato but not in grape. NGTs also can be easily implemented in tomato to not only speed up the gene-to-trait but also develop new tomato varieties.