Macrowine 2021
IVES 9 IVES Conference Series 9 Macrowine 9 Macrowine 2021 9 Grapevine diversity and viticultural practices for sustainable grape growing 9 The effect of viticultural treatment on grape juice chemical composition

The effect of viticultural treatment on grape juice chemical composition


AIM: Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology [1]. The interactions among these grapevines, pests and microbes can influence the chemical composition of grapes and, therefore, the metabolites of the wines [2,3]. The wine industry is becoming more aware of the importance that the vineyard ecosystem plays in grape and wine production; in addition, there is a growing desire to use fewer synthetic chemicals to promote natural and diverse vineyard ecosystems. This study investigates the effect of two different viticultural management approaches on grape juice composition. Key metabolites in juice samples originating from grapes subjected to different viticultural treatments (Contemporary – use of synthetic herbicides and Future – no use of synthetic herbicides) were measured prior to alcoholic fermentation.

METHODS: Key metabolites, including amino acids, C6 compounds, and thiol precursors, were quantified in this study using a combination of GC-MS and LC-MS/MS [4]. SPE was used to extract volatile C6-compounds from the juices before analysis [5,6]. Basic oenological parameters of the juice samples were also determined. Data analysis was carried out using the software R and MetaboAnalyst.

RESULTS: Twenty-wight important metabolites in New Zealand Sauvignon blanc, Pinot noir and Merlot juice samples were detected and measured. From the results, PERMANOVA factors (Variety, Vintage, Region and Treatment) were found to be significant (p-value < 0.05). Although the factor Treatment was less than the role of the intrinsic factors Variety and Vintage, it is essential to highlight that approximately 4.1% of the variation found within the data set can be attributed to the implementation of the viticultural management regimes.


In this study, the chemical profile of New Zealand grape juice from grapes grown under different vineyard management regimes was explored. The results confirmed that the difference in metabolite profiles between vineyard management regimes was small but detectable. This information is noteworthy and valuable for grape growers because of increasing concerns regarding the use of synthetic chemicals in agriculture and the shift towards improved sustainable horticultural practices.


The authors wish to thank the Bragato Research Institute, New Zealand Winegrowers, and the Ministry of Business, Industry, and Employment (MBIE), for funding this work.


Publication date: September 2, 2021

Issue: Macrowine 2021

Type: Article


Jin Wang

University of Auckland, New Zealand,Bruno FEDRIZZI, University of Auckland Rebecca E. JELLEY, University of Auckland Farhana PINU, New Zealand Institute for Plant and Food Research Limited Emma SHERMAN, New Zealand Institute for Plant and Food Research Limited Damian MARTIN, New Zealand Institute for Plant and Food Research Limited Claire GROSE, New Zealand Institute for Plant and Food Research Limited

Contact the author


grape juice, viticultural treatments, amino acids, c6 compounds, thiol precursors


Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.