Terroir 2004 banner
IVES 9 IVES Conference Series 9 Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

Soil management with cover crops in irrigated vineyards: effects in vine microclimate (cv. Malbec) grown in a terroir of Agrelo (Luján de Cuyo)

Abstract

[English version below]

L’objectif de cette recherche a été de déterminer les effets de l’enherbement dans le microclimat de la vigne. On a comparé cinq couvertures de cycle végétatif différent en ce qui concerne l’entretien du sol sans culture par application d’herbicides. L’étude a été developpée dans un vignoble cv. Malbec conduit en haute espalier, situé en a terroir á Agrelo, Luján de Cuyo, Mendoza, Argentine. On a déterminé des paramètres micro climatiques: température, humidité relative et éclairement au niveau des grappes; température du sol (prof.: 15 cm), quantité et qualité du rayonnement réfléchie par l’enherbement. On constate une réduction significative de la PAR réfléchie par l’enherbement et un rapport Rouge/Rouge loin significativement inférieure à celui du sol découvert (sans culture). Ce ne fait pas une effet dans la végétation, parce que l’enherbement permanent de trèfle rouge (Trifolium pratensis) et agropyro élevé (Agropyron elongatum) déterminent une restriction de la vigueur de la vigne que se traduit en une meilleure réception directe de la radiation photosynthétiquement active (RPA) au niveau des grappes. Il n’y a pas une modification significative par rapport aux températures maximale et minimale et en l’amplitude thermique au niveau des grappes. Il faut consigner que les traitements qui présentent une grande couverture du sol montrent une tendance de réduire la température minimale (–0,5 ºC pour le trèfle rouge et agropyro élevé), que peut être important dans certains périodes critiques. L’humidité relative dans la zone des grappes n’est pas significativement affectée. Trèfle rouge, agropyro élevé, seigle-brome (Secale cereale-Bromus catharticus) et millet de Sudán (Sorghum sudanensis) présentent une considérable diminution de l’amplitude thermique du sol, déterminée principalement par une diminution de la température maximale. Les espèces qu’ont certaines difficultés de développement pendant leur cycle se comportent de manière intermédiaire ou similaire à un sol sans couverture. L’introduction d’enherbement permanent avec une bonne occupation de l’inter rang modifie les caractéristiques micro climatiques, notamment par rapport à la température du sol et à la réception du rayonnement. Il conviendra de vérifier si les effets mentionnés se manifestent avec une intensité différente selon l’importance de la surface enherbée, modifiant ainsi le mesoclimat du vignoble.

The objective of this work was to study the influence of cover crops soil management in vine microclimate. For this aim, a research was conduced to compare five different species with diverse vegetative cycle against no tillage soil management through herbicides applications. The study was developed in a vineyard of cv. Malbec trellised in vertically positioned shoots (VPS) and located in a terroir of Agrelo, Luján de Cuyo, Mendoza, Argentine. Primarily, measures of microclimatic parameters were taken: temperature, relative humidity and radiation at bunches level; soil temperature (depth: 15 cm), quantity and quality of cover reflected radiation. We verified a significant diminution of cover crop reflected PAR and a significantly poorer Red/Far red ratio than bare soil (no cultivation). Those had no effects inside the canopy, because permanent cover crops of red clover (Trifolium pratensis) and tall wheatgrass (Agropyron elongatum) resulted in a restriction in vine vigour that translated in a greater direct PAR reception at bunches level. There were not a significant variation of: maximum and minimum temperatures and temperature amplitude, at bunches level. It was remarkable that the treatments with greater ground cover had a tendency to lightly reduce the minimum temperature (-0,5 ºC for red clover and tall wheatgrass), which could be important for critical periods. Relative humidity in the canopy was not significantly affected. Red clover, tall wheatgrass, cereal rye-chess mix (Secale cereale-Bromus catharticus) and sudangrass (Sorghum sudanensis) notably decreased soil thermic amplitude. This effect was mainly due to a decrease in the maximum temperature. Cover crops species with difficulty to develop during their cycle had an intermediate behaviour or very similar to bare soil. The introduction of a permanent cover crop with a good invasion of inter row spacing modified microclimatic characteristics principally related to soil temperature and reception of radiation. It would be convenient to verify if the mentioned effects show a different intensity in a larger cover crop surface, modifying the vineyard mesoclimate.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

E.M. Uliarte, R.F. del Monte, J.A. Prieto and S.E. Sari

EEA Mendoza INTA, San Martín 3853 Luján de Cuyo, Mendoza Argentina

Contact the author

Keywords

Grapevine, Malbec, soil management, cover crops, microclimate, radiation, reflected radiation, temperature, relative humidity, vigour, yield, grape, wine

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Assessing the effect of oak derived aromas on mouthfeel perception in Chardonnay wine

Mouthfeel is an important quality parameter for Chardonnay wines, particularly those aged in oak. While research on mouthfeel has traditionally focused on the impact of non-aromatic compounds, the role of aroma compounds has largely been over looked. However, in wine as well as other food interactions between retronasal aroma and mouthfeel have been noted. The goal of this research was to investigate the impact of wine aroma on the perception of mouthfeel. Because of the importance of oak aging in the development of Chardonnay mouthfeel, the impact of oak aromas on perceived mouthfeel was explored. Aroma compounds associated with oak (ethyl palmitate, eugenol, furfural, isoeugenol, syringaldehyde, vanillin and whiskey lactone) were added to two different Chardonnay wines; one with no oak influence and one fermented in neutral oak. Low and high concentrations of the compounds were added based on concentrations typically found in barrel aged Chardonnay wine.

How distinctive are single vineyard Gewürztraminer musts and wines from Alto Adige (Italy) based on untargeted analysis, sensory profiling, and chemometric elaboration?

Vitis vinifera L. ‘Gewürztraminer’ is a historical grape variety of Alto Adige (Südtirol), Italy, which is widely grown in the area of Tramin an der Weinstraße, but is also grown globally. It produces highly aromatic wines that are strongly influenced by the terroir of the vineyard sites where they are grown. This study looked at musts and young wines from ‘Gewürztraminer’ grapes harvested in seven distinct vineyards near Tramin and then processed at Cantina di Termeno, minimizing winemaking protocol variability. Samples were profiled using bidimensional gas chromatography–time-of-flight mass spectrometry, liquid chromatography coupled to electrochemical detection, and near-IR spectrometry. The data were subjected to Principle Component Analysis and Hierarchical Clustering Analysis. Sensory discriminant testing was undertaken using the sorting method with a semi-trained panel, and the data were processed using Multidimensional Scaling. Seven must/wine pairs could be distinguished based on their untargeted volatilome profiles and on sensory evaluation. As expected, there were greater differences in the volatile compounds between the wines than between the musts. The wines from vineyards 4 and 5 were nonetheless quite homogenous in terms of chemical and sensory analyses, as were the wines from vineyards 1 and 3. For the phenolic profile, differences were noted between the musts and wines of vineyards 2, 3, and 4, but the musts from vineyards 5 and 7 were similar. Sensory analysis showed the wines from vineyards 6 and 7 to be distinct from the rest. These results reinforce that the composition of ‘Gewürztraminer’ musts and wines is strongly determined by vineyard site, even in a small geographic area with high variability of the terroir (soil and microclimate), and that these differences are apparent in the flavours and aromas of the finished wines. Further confirmation would require a larger sample of wines, preferably from several vintages.

Development of a new method to understand headspace aroma distribution and explore the pre-sensory level in perceptive interactions involved in red wine fruity aroma expression

A part, at least, of red wines fruity expression may be explained by perceptive interactions involving particularly various substituted ethyl esters and acetates present at concentration far below their olfactory threshold, specifically thanks to synergistic effects. Wine sensory perception is directly linked to the stimulation of the taster at the level of olfactory epithelium by volatiles. These compounds are liberated from the matrix to the atmosphere, and will then be smelt. From a physico-chemical point of view, these volatiles ability to be released may be evaluated by their partition coefficients, which correspond to the volatile concentration ratio between the liquid and gas phase. Our goal is, through these coefficients determination, to assess if volatile matrix composition is able to impact the volatility of some compounds, and then explain sensory perception, i.eto evaluate what is called the pre-sensorial level impact.

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Better understand the soil wet bulb formation with subsurface or aerial drip irrigation in viticulture

The gradual change in rainfall patterns experienced in the south of France vineyards, especially around the Mediterranean sea, means that the vines are increasingly subject to summer drought. The winegrowers developped the use of irrigation techniques to ensure the maintenance of competitive yields in the production of wines under Protected Geographical Indication label. In practice, drip irrigation pipes can be installed above the ground or buried into the soil as well as at different distances from the vine row. The objective of this study was to examine the profiles of the wet bulbs of the soil obtained from two drip irrigation systems : aerial drip located under the vine row and subsurface drip placed in the middle of the inter-row. This experiment took place over two consecutive seasons (2020-2021) on a 3.4 ha Viognier plot in the Mediterranean region (PGI Oc, France) on sandy clay soil. The annual rainfalls were less than 400 mm. Soil water content probes were installed at different depths (20 – 40 – 60 – 80 cm) and at different lateralities from the vine row (30 – 60 – 90 – 120 cm) to control the formation of the soil wet bulb during irrigation. The mapping and the analysis of the data allowed a better understanding and differentiation of the water percolation when irrigating with subsurface or aerial drip. For the same amount of water and without differences of vine water status, it is shown that in a subsurface drip irrigation situation, the size of the wet bulb formed is larger than in aerial drip irrigation system.