Terroir 2004 banner
IVES 9 IVES Conference Series 9 Effect of irrigation and soil type on root growth and distribution of Vitis vinifera L. cv. Nero d’Avola grown in Sicily

Effect of irrigation and soil type on root growth and distribution of Vitis vinifera L. cv. Nero d’Avola grown in Sicily

Abstract

[English version below]

L’essai a été effectué dans un vignoble du cépage Nero d’Avola greffé sur 1103 Paulsen dans un terroir de la D.O.C Alcamo en Sicile. Le système de conduite des vignes était à espalier, la taille à cordon coursonné et l’irrigation à goutte a goutte. On a été confrontés trois types de traitements: A) vignes non irriguées; B) vignes irriguées quand le potentiel hydrique foliaire (potentiel de base) était au dessous de –0.7 MPa, pour maintenir le potentiel hydrique foliaire de base au dessous de –0.4 MPa jusqu’à la récolte; C) vignes irriguées en maintenant le potentiel hydrique foliaire de base au dessous de –0.4 MPa du débourrement à la récolte. Dans le parcelle de l’essai étaient présents trois types de sol argileux: Entisol dans le partie haute de la colline, Inceptsol à moitié de la colline et Vertisol à la vallée de la colline. On a déterminé la distribution du système racinaire de la vigne dans les différentes types de sol par rapport aux différents traitements hydriques en emploient la méthode du contact. L’irrigation a été le facteur le plus important pour la croissance et la distribution du système racinaire; on a aussi noté que la stratégie de l’apport hydrique doit être calculée par rapport au type du sol ou vice-versa; par conséquence c’est le type de sol que détermine la stratégie d’irrigation la plus appropriée. Pour étudier les rapports entre le système racinaire et le feuillage et toute la biomasse il faut tenir en compte l’efficience du système racinaire, particulièrement dans les conditions dans lesquelles les divers effets limitants sont réduits, comme se vérifie dans les endroits secs où on emploie l’irrigation.

The trial was carried out in a Nero d’Avola vineyard, grafted onto 1103Paulsen, and located in Alcamo D.O.C. area (Sicily). Vines were trained to a vertical trellis system, spur pruned and drip irrigated. Three treatments were applied: A) vines grown without irrigation water; B) vines irrigated when the pre-dawn leaf water potential was above -0.7 MPa and to maintain pre-dawn leaf water potential at value below -0.4 MPa until harvest; C) vines irrigated in order to maintain pre-dawn leaf water potential at value below -0.4 MPa, from budbreak to harvest. Three clay soil types were present in the vineyard: Entisol, on the top of the hill, Inceptisol, halfway down the hill and Vertisol, at the bottom of the hill. The distribution of the root system in the different soil types and in relation to the different irrigation treatments was determined by using the contact method. Irrigation was the most important factor in determining the quantity and distribution of roots, even if it was also noted that the irrigation strategy must be calculated in relation to the type of soil or vice-versa, so that the type of soil determines the most suitable irrigation strategy. For the study of the relationships between root systems and area, it is necessary to take the efficiency of the root systems into account, especially in conditions in which the various limiting effects are reduced, as happens in the dry environments where irrigation is used.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

M.G. Barbagallo, P. Costanza, R. Di Lorenzo, E. Gugliotta, A. Pisciotta, * S. Raimondi and T. Santangelo

Dipartimento di Colture Arboree – Università degli Studi di Palermo – Viale delle Scienze, 11 – 90128 Palermo – Italy
*Dipartimento di Agronomia Ambientale e Territoriale – Università degli Studi di Palermo

Contact the author

Keywords

Soil types, irrigation, predawn water potential, root, Nero d’Avola cv

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Combining high-power ultrasound and oenological enzymes during winemaking for improving red wine chromatic characteristics

he use of high-power ultrasound (US) is proving of great interest to the oenological industry due to its effects in the improvement of wine organoleptic characteristics, especially in terms of color [1, 2].

An analytical framework to site-specifically study climate influence on grapevine involving the functional and Bayesian exploration of farm data time series synchronized using an eGDD thermal index

Climate influence on grapevine physiology is prevalent and this influence is only expected to increase with climate change. Although governed by a general determinism, climate influence on grapevine physiology may present variations according to the terroir. In addition, these site-specific differences are likely to be enhanced when climate influence is studied using farm data. Indeed, farm data integrate additional sources of variation such as a varying representativity of the conditions actually experienced in the field. Nevertheless, there is a real challenge in valuing farm data to enable grape growers to understand their own terroir and consequently adapt their practices to the local conditions. In such a context, this article proposes a framework to site-specifically study climate influence on grapevine physiology using farm data. It focuses on improving the analysis of time series of weather data. The analytical framework includes the synchronization of time series using site-specific thermal indices computed with an original method called Extended Growing Degree Days (eGDD). Synchronized time series are then analyzed using a Bayesian functional Linear regression with Sparse Steps functions (BLiSS) in order to detect site-specific periods of strong climate influence on yield development. The article focuses on temperature and rain influence on grape yield development as a case study. It uses data from three commercial vineyards respectively situated in the Bordeaux region (France), California (USA) and Israel. For all vineyards, common periods of climate influence on yield development were found. They corresponded to already known periods, for example around veraison of the year before harvest. However, the periods differed in their precise timing (e.g. before, around or after veraison), duration and correlation direction with yield. Other periods were found for only one or two vineyards and/or were not referred to in literature, for example during the winter before harvest.

What strategies do wine firms adopt to integrate CSR into their activities? An analysis among Italian wineries

Corporate Social Responsibility (CSR), as defined by the European Commission, is a strategic framework through which companies integrate social, environmental, and economic sustainability into their operations (European Commission, 2001).

Assessment of wine non-Saccharomyces yeast strains as promising producers of glutathione

AIM: Glutathione (GSH) is a non-protein thiol naturally present in grape berries and produced by yeasts during fermentation. It has a strong antioxidant activity, thus can be added during winemaking to limit the oxidative phenomena of wine, preserving sensory characteristics and stability, ultimately promoting a healthier product by reducing the need for SO2 addition.

Diversity of leaf functioning under water deficit in a large grapevine panel: high throughput phenotyping and genetic analyses

Water resource is a major limiting factor impacted by climate change that threatens grapevine production and quality. Understanding the ecophysiological mechanisms involved in the response to water deficit is crucial to select new varieties more drought tolerant. A major bottleneck that hampers such advances is the lack of methods for measuring fine functioning traits on thousands of plants as required for genetic analyses. This study aimed at investigating how water deficit affects the trade-off between carbon gains and water losses in a large panel representative of the Vitis vinifera genetic diversity. 250 genotypes were grown under 3 watering scenarios (well-watered, moderate and severe water deficit) in a high-throughput phenotyping platform.