Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of soil water holding capacity and plant water relations in zone/terroir expression

The role of soil water holding capacity and plant water relations in zone/terroir expression

Abstract

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit composition even within small units of climatic zones, and much less so over larger climatic trans-sects. The influence of water status on grape composition has been studied intensively for many years, yet indirect effects caused by changes in plant water status have been largely neglected. For example, vineyard sites with limited water supply will be more prone to early leaf drop causing substantial changes in the light environment of the fruit, which in itself will change fruit temperature. Additionally, there is almost certainly a different link between plant water status and fruit and wine composition for red and white cultivars and within each respective group between varieties of different geographic origin. Another unresolved problem is the coupling of soil to plant water status. Many plant water status indicators such as stem, or midday or pre-dawn (ΨPD) leaf water potential are difficult to link to quantitative soil water data. We have recently started to use the concept of total transpirable soil water (TTSW) and the fraction thereof (FTSW), originally proposed for herbaceous plants, to evaluate the coupling between soil water availability and plant water status measurements for contrasting vineyard sites. Even for soil water holding capacities over the root profiles between 380 and 100 L/m2, and a TTSW varying from 50 to 175 L/m2, respectively, we found a single common relationship between ΨPD and FTSW for all vineyards, irrespective of water extraction profiles and canopy systems (Gruber and Schultz 2004 in press). This relationship has also been proven stable across different wine regions in Europe. This system may provide a platform to better link quality parameters to plant and soil water status. Some recent results also suggest that indirect effects of changes in water supply may be more important than previously thought for fruit composition. These effects seem not restricted to changes in canopy microclimate or co-limiting factors such as nitrogen, but seem to extend to substances influencing micronutrient metabolism of yeasts, which may alter aromatic expression. It is clear and has been proven many times that water relations are important in quality formation and in the expression of terroir characters, yet it is still difficult to provide conclusive linkages between all the involved parameters.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. R. Schultz (1,2), Bernd Gruber (1)

(1) Institut für Weinbau und Rebenzüchtung, Forschungsanstalt Geisenheim, Germany
(2) Fachbereich Weinbau und Getränketechnologie, Fachhochschule Wiesbaden, von Lade Str. 1, D-65366 Geisenheim, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

INFLUENCE OF WINEMAKING VARIABLES AND VINEYARD LOCATIONS ON CHEMICAL AND SENSORY PROFILES OF SOUTH TYROLEAN PINOT BLANC

Pinot Blanc, an important grape variety grown in some mountain areas of Northern Italy such as South Tyrol over the last decades, with its cultivation covering 10.3% of the total vineyards, has compatible climatic conditions (e.g. heat requirements) which are normally found in the geographical areas of the mountain viticulture [1,2,3,4]. Climatic changes are hastening the growth of this variety at higher elevations, particularly for the production of high quality wine.

Sensory definition of green aroma concept in red French wines. Evidence for the contribution of novel volatile markers

The aromatic complexity of a wine results from the perception of the association of volatile molecules and each aroma can be categorized into different families. The “green” aromas family in red wines has retained our attention by its close link with the fruity perception. In that study, the “green” olfactory concept of red wines was considered through a strategy combining both sensory analysis and hyphenated chromatographic techniques including HPLC and MDGC (Multidimensional Gas Chromatography). The aromatic space of this concept was specified by lexical generation through a free association task on 22 selected wines by a panel of wine experts. Then, 70 French red wines were scored on the basis of the intensity of their “green” and “fruity” attributes.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

Irrigation and terroir: two opposite concepts? Point of view of international experts and french consumers

At long term, qualitative irrigation seems to be the most systematic, if not the best, cultural practice for dealing with climate change and yield increases without decrease grape quality.

Study of the aromatic oxidation markers of Tempranillo long aged wines

The aromatic quality of wines after a long aging period in bottle is one of key points for oenologists. The objective of this work is to determine the main representative aromatic compounds found in long aged wines from D.O.Ca. Rioja. This study was made by 32 wines from 1971 to 2010 vintages. Sotolon, acetaldehyde, phenylacetaldehyde, 1,1,6-trimethyl-1,2-dihydronaptalene (TDN), β-damascenone, Y-decalactone and Y-dodecalactone were determined as the most important oxidation markers by GC-MS analysis. Moreover, sensory analysis using triangular tests were performed from wines with and without the addition of the mentioned compounds. Four different concentrations of each odorant were added, as individual compounds and as mixtures. The additions were ranged from values close to the reference odour thresholds up to high level concentrations. The most identified aroma was sotolon, which is commonly associated to curry and coffee liqueur aromatic notes. Other oxidative compounds were easily detected by panellists, such as Y-decalactone (peach compote), Y-dodecalactone (ripe fruit). The mixtures of the odorants were most easily detected than the individual compounds. It should be noted that acetaldehyde and phenylacetaldehyde were rarely perceived and distinguished.