Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of soil water holding capacity and plant water relations in zone/terroir expression

The role of soil water holding capacity and plant water relations in zone/terroir expression

Abstract

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit composition even within small units of climatic zones, and much less so over larger climatic trans-sects. The influence of water status on grape composition has been studied intensively for many years, yet indirect effects caused by changes in plant water status have been largely neglected. For example, vineyard sites with limited water supply will be more prone to early leaf drop causing substantial changes in the light environment of the fruit, which in itself will change fruit temperature. Additionally, there is almost certainly a different link between plant water status and fruit and wine composition for red and white cultivars and within each respective group between varieties of different geographic origin. Another unresolved problem is the coupling of soil to plant water status. Many plant water status indicators such as stem, or midday or pre-dawn (ΨPD) leaf water potential are difficult to link to quantitative soil water data. We have recently started to use the concept of total transpirable soil water (TTSW) and the fraction thereof (FTSW), originally proposed for herbaceous plants, to evaluate the coupling between soil water availability and plant water status measurements for contrasting vineyard sites. Even for soil water holding capacities over the root profiles between 380 and 100 L/m2, and a TTSW varying from 50 to 175 L/m2, respectively, we found a single common relationship between ΨPD and FTSW for all vineyards, irrespective of water extraction profiles and canopy systems (Gruber and Schultz 2004 in press). This relationship has also been proven stable across different wine regions in Europe. This system may provide a platform to better link quality parameters to plant and soil water status. Some recent results also suggest that indirect effects of changes in water supply may be more important than previously thought for fruit composition. These effects seem not restricted to changes in canopy microclimate or co-limiting factors such as nitrogen, but seem to extend to substances influencing micronutrient metabolism of yeasts, which may alter aromatic expression. It is clear and has been proven many times that water relations are important in quality formation and in the expression of terroir characters, yet it is still difficult to provide conclusive linkages between all the involved parameters.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. R. Schultz (1,2), Bernd Gruber (1)

(1) Institut für Weinbau und Rebenzüchtung, Forschungsanstalt Geisenheim, Germany
(2) Fachbereich Weinbau und Getränketechnologie, Fachhochschule Wiesbaden, von Lade Str. 1, D-65366 Geisenheim, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Determination of the maturity status of white grape berries (Vitis vinifera L. cv Chenin) through physical measurements

La véraison, stade intermédiaire du développement de la baie de raisin, correspond au début de la maturation. Aux modifications de coloration de la pellicule sont associées une perte de fermeté, une diminution de l’acidité et une augmentation des teneurs en sucres et pigments ainsi que du volume de la baie. Le stade de véraison des cépages blancs reste difficile à apprécier visuellement. Son évaluation par palpation est subjective et donc sujette à caution.

WINE SWIRLING: A FIRST STEP TOWARDS THE UNLOCKING OF THE WINE’STASTER GESTURE

Right after the pouring of wine in a glass, a myriad of volatile organic compounds, including ethanol, overwhelm the glass headspace, thus causing the so-called wine’s bouquet [1]. Otherwise, it is worth noting that during wine tasting, most people automatically swirl their glass to enhance the release of aromas in the glass headspace [1]. About a decade ago, Swiss researchers revealed the complex fluid mechanics underlying wine swirling [2]. However, despite mechanically repeated throughout wine tasting, the consequences of glass swirling on the chemical space found in the headspace of wine glasses are still barely known.

Effect of fertigation strategies to adapt PGI Côtes de Gascogne production to hot vintage

The development of fertigation could be a possible solution to adapt PGI Côtes de Gascogne (south-western France) wine production to climate change. The goal would be to limit the negative effects of water stress on yield performance expectation (around 15 tons per hectare) and to make the use of fertilizers more efficient. This study aimed to compare the effects of three strategies of water and minerals supply on grapes and wines qualities. Two fertigation practices were compared to a rainfed control which is the current standard of the local grape growing production. The fertilizers (nitrogen and potassium) were (i) fully brought by irrigation pipe during the season, (ii) partially brought by irrigation pipe and partially on the soil or (iii) fully brought on the soil at the beginning of the season for the non-irrigated control (local standard). The trial was run on cv. Colombard trained on spur pruned with vertical shoot positioning system on a sandy-silty-clay soil over the 2020 vintage which was particularly hot for the region. Moderate to strong water deficit appeared during the growing period of the berries and held on after veraison. Irrigation strategies allowed for maintaining grapevine without water deficit and being significantly different from the control water status. Grapevine with fully or partial fertigation strategies produced 25% more yield mainly due to the increase of the bunch weight. Also, the fully fertigation showed the best ratio between yield and maturity and brought 30% less of fertilizers (both nitrogen and potassium) than the two other strategies. Finally, the analysis of aromatic compounds in Colombard wines, varietal thiols family, showed the same level of concentrations for the 3 treatments, confirming that the yield performance did not impact the aromatic potential in this trial.

Foliar application of urea improved the nitrogen composition of Chenin grapes

The nitrogen composition of the grapes directly affects the developments of alcoholic fermentation and influences the final aromatic composition of the wines. The aim of this study was to determine the effect and efficiency of foliar applications of urea on the nitrogen composition of grapes. This study was carried out during 2023 vintage and in the Chenin vineyard located in Estacion Experimental Mendoza (Argentina). Three urea concentrations 3, 6 and 9 Kg N/ha (C1, C2, and C3, respectively) and control (T) were applied in this vineyard at veraison.

Barrel-to-Barrel Variation of Color and Phenolic Composition in Barrel-Aged Red Wine

Tangible variation of sensory characteristics is often perceived in wine aged in similar barrels. This variation is mostly explained by differences in the wood chemical composition, and in the production of the barrels. Despite these facts, the literature concerning barrel-to-barrel variation and its effect on wine sensory and chemical characteristics is very scarce [1]. In this study, the barrel-to-barrel variation in barrel-aged wines was examined in respect of the most important phenolic compounds of oenological interest and chromatic characteristics, considering both the effects of the (individual) barrel and cooperage. A red wine was aged in 49 new medium-toasted oak (Quercus petraea) barrels, from four cooperages, for 12 months