Terroir 2004 banner
IVES 9 IVES Conference Series 9 The role of soil water holding capacity and plant water relations in zone/terroir expression

The role of soil water holding capacity and plant water relations in zone/terroir expression

Abstract

The spatial variability in soil type and depth and water holding capacity is very high in many viticultural regions of the world. Differences in rooting depths and water extraction profiles and their seasonal dynamics add additional variability and it is extremely difficult to deduct direct causal relationships between these factors and fruit composition even within small units of climatic zones, and much less so over larger climatic trans-sects. The influence of water status on grape composition has been studied intensively for many years, yet indirect effects caused by changes in plant water status have been largely neglected. For example, vineyard sites with limited water supply will be more prone to early leaf drop causing substantial changes in the light environment of the fruit, which in itself will change fruit temperature. Additionally, there is almost certainly a different link between plant water status and fruit and wine composition for red and white cultivars and within each respective group between varieties of different geographic origin. Another unresolved problem is the coupling of soil to plant water status. Many plant water status indicators such as stem, or midday or pre-dawn (ΨPD) leaf water potential are difficult to link to quantitative soil water data. We have recently started to use the concept of total transpirable soil water (TTSW) and the fraction thereof (FTSW), originally proposed for herbaceous plants, to evaluate the coupling between soil water availability and plant water status measurements for contrasting vineyard sites. Even for soil water holding capacities over the root profiles between 380 and 100 L/m2, and a TTSW varying from 50 to 175 L/m2, respectively, we found a single common relationship between ΨPD and FTSW for all vineyards, irrespective of water extraction profiles and canopy systems (Gruber and Schultz 2004 in press). This relationship has also been proven stable across different wine regions in Europe. This system may provide a platform to better link quality parameters to plant and soil water status. Some recent results also suggest that indirect effects of changes in water supply may be more important than previously thought for fruit composition. These effects seem not restricted to changes in canopy microclimate or co-limiting factors such as nitrogen, but seem to extend to substances influencing micronutrient metabolism of yeasts, which may alter aromatic expression. It is clear and has been proven many times that water relations are important in quality formation and in the expression of terroir characters, yet it is still difficult to provide conclusive linkages between all the involved parameters.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

H. R. Schultz (1,2), Bernd Gruber (1)

(1) Institut für Weinbau und Rebenzüchtung, Forschungsanstalt Geisenheim, Germany
(2) Fachbereich Weinbau und Getränketechnologie, Fachhochschule Wiesbaden, von Lade Str. 1, D-65366 Geisenheim, Germany

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Using δ13C and hydroscapes as a tool for discriminating cultivar specific drought response

Measurement of carbon isotope discrimination in berry juice sugars at maturity (δ13C) provides an integrated assessment of water use efficiency (WUE) during the period of berry ripening, and when collected over multiple seasons can be used as an indication of drought stress response. Berry juice δ13C measurements were carried out on 48 different varieties planted in a common garden experiment in Bordeaux, France from 2014 through 2021 and were paired with midday and predawn leaf water potential measurements on the same vines in a subset of six varieties. The aim was to discriminate a large panel of varieties based on their stomatal behaviour and potentially identify hydraulic traits characterizing drought tolerance by comparing δ13C and hydroscapes (the visualisation of plant stomatal behaviour as a response to predawn water potential). Cluster analysis found that δ13C values are likely affected by the differing phenology of each variety, resulting in berry ripening of different varieties taking place under different stress conditions within the same year. We accounted for these phenological differences and found that cluster analysis based on specific δ13C metrics created a classification of varieties that corresponds well to our current empirical understanding of their relative drought tolerances. In addition, we analysed the water potential regulation of the subset of six varieties (using the hydroscape approach) and found that it was well correlated with some δ13C metrics. Surprisingly, a variety’s water potential regulation (specifically its minimum critical leaf water potential under water deficit) was strongly correlated to δ13C values under well-watered conditions, suggesting that base WUE may have a stronger impact on drought tolerance than WUE under water deficit. These results give strong insights on the innate WUE of a very large panel of varieties and suggest that studies of drought tolerance should include traits expressed under non-limiting conditions.

Riesling aroma composition in light of changing global temperatures – delving into the effects of warmer nights on the volatile profile of riesling grapes

Climate is a key parameter when the modulation of berry and subsequent wine composition is considered. Recent decades have already seen an increase in global surface temperatures

Variations of soil attributes in vineyards influence their reflectance spectra

Knowledge on the reflectance spectrum of soil is potentially useful since it carries information on soil chemical composition that can be used to the planning of agricultural practices. If compared with analytical methods such as conventional chemical analysis, reflectance measurement provides non-destructive, economic, near real-time data. This paper reports results from reflectance measurements performed by spectroradiometry on soils from two vineyards in south Brazil. The vineyards are close to each other, are on different geological formations, but were subjected to the same management. The objective was to detect spectral differences between the two areas, correlating these differences to variations in their chemical composition, to assess the technique’s potential to predict soil attributes from reflectance data.To that end, soil samples were collected from ten selected vine parcels. Chemical analysis yield data on concentration of twenty-one soil attributes, and spectroradiometry was performed on samples. Chemical differences significant to a 95% confidence level between the two studied areas were found for six soil attributes, and the average reflectance spectra were separated by this same level along most of the observed spectral domain. Correlations between soil reflectance and concentrations of soil attributes were looked for, and for ten soil traits it was possible to define wavelength domains were reflectance and concentrations are correlated to confidence levels from 95% to 99%. Partial Least Squares Regression (PLSR) analyses were performed comparing measured and predicted concentrations, and for fifteen out of 21 soil traits we found Pearson correlation coefficients r > 0.8. These preliminary results, which have to be validated, suggest that variations of concentration in the investigated soil attributes induce differences in reflectance that can be detected by spectroradiometry. Applications of these observations include the assessment of the chemical content of soils by spectroradiometry as a fast, low-cost alternative to chemical analytical methods.

Study of grape plant behaviour (cv. Chasselas) on various “terroirs” of the Vaud county (Switzerland)

L’étude du comportement physiologique et agronomique de la vigne (cv. Chasselas) a été réalisée en 2001 par la Station fédérale de recherches en production végétale de Changins sur divers terroirs viticoles vaudois (Suisse), dans le cadre d’un projet d’étude des terroirs viticoles vaudois en collaboration avec le bureau I LETESSIER (SIGALES) à Grenoble et l’École polytechnique fédérale de Lausanne (EPFL).

Drought lessons: long-term effects of climate, soil characteristics, and deficit irrigation on yield and quality under high atmospheric demand in the Douro Region

Global warming is one of the biggest environmental, social and economic threats in several viticultural regions. In the Douro Valley, changes are expected in the coming years, namely an increase in temperature and a decrease in precipitation. These changes are likely to have consequences for the production and quality of wine.