Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Contribution du potentiel glycosidique à l’arôme des vins de Grenache noir et Syrah en Vallée du Rhône

Abstract

Grenache Noir and Syrah are the predominant grape varieties in the French Rhone valley vineyard, and produce wines with well differentiated aromatic notes. This study aimed at investigating the contribution of glycoconjugated precursors to these aromatic specificities, through their analytical profiles and the sensory influence of the odorant compounds they release during wine aging. The aglycones released by enzymatic hydrolysis of glycosidic extracts from grape were quantified using GC-MS analysis, and the profiles of both varieties were compared for different geographical sites of the French Rhone valley vineyard, and for three consecutive years. Moreover, the wines elaborated with different grapes were added with their own glycosides, then submitted to aging treatments prior to sensory descriptive analysis. The results showed that addition with glycosidic precursors enhanced the initial aromatic notes of the wines, depending on grape variety and vine site. The aglycone profiles of the grapes of the two varieties showed significant differences for half of the quantified compounds, and were influenced by vintage and vine site. It therefore appeared that glycosidic precursors could actually contribute to the aging aromas of Grenache Noir and Syrah wines, and to the complex interactions between variety and terroir.
Le Grenache Noir et la Syrah sont les cépages les plus répandus dans le vignoble français de la vallée du Rhône, et produisent des vins bien différenciés d’un point de vue aromatique. L’objectif de cette étude est de cerner la contribution des précurseurs glycosidiques à ces spécificités aromatiques, à travers leurs profils analytiques et l’influence sensorielle des composés odorants qu’ils génèrent au cours du vieillissement des vins. Les aglycones libérées par hydrolyse enzymatique des extraits glycosidiques des baies ont été quantifiées par analyse en GC-MS, et les profils des deux variétés ont été comparés pour différents terroirs de la vallée du Rhône, et trois millésimes consécutifs. Par ailleurs, les vins élaborés à partir de ces raisins ont été enrichis en leurs propres précurseurs, puis soumis à des traitements de vieillissement avant une analyse sensorielle descriptive. Les résultats montrent que l’enrichissement en glycosides intensifie les notes aromatiques initiales des vins, avec un effet dépendant du cépage et du site d’implantation de la vigne. Les profils d’aglycones des baies des deux variétés présentent des différences significatives portant sur la moitié des composés quantifiés, et apparaissent influencés par le millésime et le site d’implantation. Cette étude montre ainsi que les précurseurs glycosidiques pourraient participer à l’arôme de vieillissement des vins de Grenache Noir et Syrah, et aux interactions complexes entre cépage et terroir.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

M. Ségurel (1,2), R. Baumes (1), C. Riou (2), A. Razungles (1)

(1) UMR Sciences pour l’œnologie, INRA, 2 place Viala, 34060 MONTPELLIER Cedex 1
(2) INTER RHONE, Interprofession des vins AOC Côtes-du-Rhône et vallée du Rhône, 2260 route du Grès, 84100 ORANGE

Contact the author

Keywords

Wine, grape, Grenache noir, Syrah, aroma, glycoconjugate, sensory analysis, volatile

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

In-line sensing of grape juice press fractioning with UV-Vis spectroscopy

UV-Visible spectroscopy in conjunction with chemometrics, was successfully applied to objectively differentiate sparkling wine press juice fractions of Pinot noir. Two measurements methods were applied: reflectance using a fibre optic probe in-line and transmission using a benchtop spectrophotometer.

Crop water stress index as a tool to estimate vine water status

Crop Water Stress Index (CWSI) has long been a ratio to quantify relative plant water status in several crop and woody plants. Given its rather well relationship to either leaf or stem water potential and the feasibility to sample big vineyard areas as well as to collect quite a huge quantity of data with airborne cameras and image processing applications, it is being studied as a tool for irrigation monitoring in commercial vineyards. The objective of this paper was to know if CWSI estimated by measuring leaf temperature with an infrared hand held camera could be used to substitute the measure of stem water potential (SWP) without losing accuracy of plant water status measure.

On the losses of dissolved CO2 during champagne aging

A misconception lingers in the minds of some wine consumers that Champagne wines don’t age. It’s largely a myth, certainly as far as the best cuvees are concerned. Actually, during the so-called autolysis period of time (in the closed bottle, after the “prise de mousse”), complex chemical reactions take place when the wine remains in contact with the dead yeast cells, which progressively bring complex and very much sought-after aromas to champagne. Nevertheless, despite their remarkable impermeability to liquid and air, caps or natural cork stoppers used to cork the bottles are not 100% hermetic with regard to gas transfers. Gas species therefore very slowly diffuse through the cap or cork stopper, along their respective inverse partial pressure. After the “prise de mousse”, because the partial pressure of CO2 in the bottleneck reaches up to 6 bars (at 12 °C), gaseous CO2 progressively diffuse from the bottle to the ambient air
(where the partial pressure of gaseous CO2 is only of order of 0,0004 bar).

From soil to canopy, the diversity of adaptation strategies  to abiotic constraints in grapevine

Climate change is here. One of the main consequences is an increase in the frequency and severity of abiotic stresses which mostly occur in a combined manner. Grapevine, which grows in a large diversity of pedo-climatic conditions, has presumably evolved different mechanisms to allow this widespread adaptation. Harnessing the genetic diversity in these mechanisms will be central to the future of viticulture in many traditional wine growing areas. The interactions between the scion and the rootstock through grafting add an additional level of diversity and adaptive potential to explore.
At the physiological level, these mechanisms are related to processes such as root system development and functioning (water and nutrient uptake), interactions with the soil microbiome, gas exchange regulation, hydraulic properties along the soil-plant-atmosphere continuum, reserve storage, short and long distance signaling mechanisms and plasticity for some of these traits.

VOLATILE, PHENOLIC AND COLORIMETRIC CHARACTERIZATION OF THREE DIFFERENT LAMBRUSCO APPELLATIONS

Lambrusco is a commercially successful sparkling red and rosé wine. With 13.06 million litres sold in 2021 was the second best-selling Italian wine after Chianti. According to National Catalogue of Vine Varieties there are thirteen Lambrusco Varieties with which to date are produced seven PDO wines. Among these, “Lambrusco Salamino di Santa Croce”, “Lambrusco Grasparossa di Castelvetro” and “Lambrusco di Sorbara” are the only ones that can be considered mono-varietal appellations, all located in Modena area. The PDOs contemplate the possibility of producing wines by secondary fermentation either in tank (Charmat method), or in bottle (Classico method). Sur lie is a third method commonly employed for Lambrusco, similar to the Classico method, from which differs for the absence of disgorgement.