Terroir 2004 banner
IVES 9 IVES Conference Series 9 Investigation on harvesting period choices for correct interpretation of experimental results

Investigation on harvesting period choices for correct interpretation of experimental results

Abstract

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.
The present paper has the aim to enhance the sensibility of our environment, and not only, this fundamental aspect in the framework of a larger project, has the aim to enhance various aspects of “quality” (for example organoleptic, economic, social and existential) and of its “economies” (Cargnello G. (1996): La qualite economique, l’economie de la qualite et la qualite economique des preferences: differentes considerations. Compte-rendu n° 9 GESCO, Budapest (Hongrie), 21 -23 Août, pp.379-384.). It was conducted on cv. Prosecco in “Terra della Valle del Piave” in collaboration with respected Casa vitivinicola Carpenè – Malvolti di Conegliano.
Particularly, the research about short cut (Spur Pruned Cordon of Conegliano) and long (precisely of training form “Prosecco Alta Marca”), showed that production of the last one is penalised if harvesting time is judged on thesis of Pruned Cordon, and inversely, in function of product typology we want to obtain and of enterprise objectives we want to achieve.

DOI:

Publication date: January 10, 2022

Issue: Terroir 2004

Type: Article

Authors

Cargnello Giovanni, Ridomi Attilio, Pezza Luciano

SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura
Viale XXVIII Aprile 26 – 31015 Conegliano (TV) Italy

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Model-assisted analysis of the root traits underlying RSA genotypic diversity in Vitis: a promising approach for rootstock selection?

By dissecting the root system architecture (RSA) into its underpinning components (e.g. root emission, axial growth, radial growth, branching, root direction or tropism) and identifying the relationships between them, functional-structural 3D root models are promising tools for analyzing the diversity and complexity of root system phenotypes with Genotype × Environment interactions. The model parameters are assumed to be synthetic traits, less influenced by the environment, and consequently with less polygenic architectures than the integrative RSA traits they drive. Root models can serve as a basis for in silico development of root system ideotypes by highlighting the developmental processes and parameters that most likely influence RSA fitness.

Bioprotection and oenological tannins association to protect Rosé wine color

The bioprotection of musts or grapes is a strategy for limiting sulfiting during winemaking and more specifically at pre-fermentative step. The most preconized yeasts in bioprotection mainly belong to Metschnikowia pulcherrima and Torulaspora delbrueckii species. While previous studies have demonstrated that bioprotectant non-Saccharomyces strains were able to protect musts and wines against microbial spoilage as well as sulfites, they cannot protect must against oxidation which appears to be the main limit of this practice.

Fining-Derived Allergens in Wine: from Detection to Quantification

Since 2012, EU Commission approved compulsory labeling of wines treated with allergenic additives or processing aids “if their presence can be detected in the final product” (EU Commission Implementing Regulation No. 579/2012 of 29 June 2012). The list of potential allergens to be indicated on wine labels comprises sulphur dioxide and milk- and egg- derived fining agents, including hen egg lysozyme, which is usually added in wines as preservative. In some non-EU countries, the list includes gluten, tree nuts and fish gelatins. With the exception of lysozyme, all these fining proteins were long thought to be totally removed by subsequent winemaking processings (e.g. bentonite addition).

Vine environment interaction as a method for land viticultural evaluation. An experience in Friuli Venezia Giulia (N-E of Italy)

For a long time environment was known as one of the most important factors to characterize the quality of wines but at the same time it appears very difficult to distinguish inside the “terroir” the role of the single factor. These remarks partially explain why methods for viticultural evaluation are often quite different (Amerine et al., 1944; Antoniazzi et al., 1986; Asselin et al., 1987; Astruc et al., 1980; Bonfils, 1977; Boselli, 1991; Colugnati, 1990; Costantinescu, 1967; Costantini et al., 1987; Dutt et al., 1981; Falcetti et al., 1992; Fregoni et al., 1992; Hidalgo, 1980; Intrieri et al., 1988; Laville, 1990; Morlat et al., 1991; Scienza et al., 1990; Shubert et al., 1987; Turri et al., 1991).

Taking advantages of innovative chemometric tools to unveil vineyard ecosystem dynamics: look across volatile secondary metabolites

Sustainable viticulture and winemaking continue to represent huge challenges, where a better knowledge about the functional role of biodiversity in the vineyard ecosystems is required.