Terroir 2004 banner
IVES 9 IVES Conference Series 9 Investigation on harvesting period choices for correct interpretation of experimental results

Investigation on harvesting period choices for correct interpretation of experimental results

Abstract

Happens too often in scientific papers to find the same harvesting period of a cultivar, although the used treatment influence a maturity curve of investigated thesis.
This inevitably leads to wrong conclusions when comparing the treatment effects, since obtained on maturity stages more or less far from those technologically correct.
The present paper has the aim to enhance the sensibility of our environment, and not only, this fundamental aspect in the framework of a larger project, has the aim to enhance various aspects of “quality” (for example organoleptic, economic, social and existential) and of its “economies” (Cargnello G. (1996): La qualite economique, l’economie de la qualite et la qualite economique des preferences: differentes considerations. Compte-rendu n° 9 GESCO, Budapest (Hongrie), 21 -23 Août, pp.379-384.). It was conducted on cv. Prosecco in “Terra della Valle del Piave” in collaboration with respected Casa vitivinicola Carpenè – Malvolti di Conegliano.
Particularly, the research about short cut (Spur Pruned Cordon of Conegliano) and long (precisely of training form “Prosecco Alta Marca”), showed that production of the last one is penalised if harvesting time is judged on thesis of Pruned Cordon, and inversely, in function of product typology we want to obtain and of enterprise objectives we want to achieve.

DOI:

Publication date: January 10, 2022

Issue: Terroir 2004

Type: Article

Authors

Cargnello Giovanni, Ridomi Attilio, Pezza Luciano

SOC Tecniche Colturali – Istituto Sperimentale per la Viticoltura
Viale XXVIII Aprile 26 – 31015 Conegliano (TV) Italy

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Identifying best parameters to characterize genotypes capability of retaining adequate malic acid at harvest and in final wines

Under current climate change pressures, obtaining grapes with adequate acidity at harvest is one of the main challenges for growers, especially if the goal is producing sparkling wines. This issue arises from two main occurrences: i) higher temperatures enhance degradation of malic acid; ii) grape maturity may occur under suboptimal climatic conditions due to an advanced phenology.

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration

Novel contribution to the study of mouth-feel properties in wines

In general, there is a well-established lexicon related to wine aroma and taste properties; however mouth-feel-related vocabulary usually includes heterogeneous, multimodal and personalized terms. Gawel et al.
(2000) published a wheel related to mouthfeel properties of red wine. However, its use in scientific publications has been limited. The authors accepted that the approach had certain limitations as it included redundant and terms with hedonic tone and some others were absent. It is of high interest to generate a mouth-feel lexicon and finding the chemical compound or group of compounds responsible for such properties in red wine. In the present work a chemical fractionation method has been developed.

Digitising the vineyard: developing new technologies for viticulture in Australia 

New and developing technologies, that provide sensors and the software systems for using and interpreting them, are becoming pervasive through our lives and society. From smart phones to cars to farm machinery, all contain a range of sensors that are monitored automatically with intelligent software, providing us with the information we need, when we need it. This technological revolution has the potential to monitor all aspects of vineyard activity, assisting growers to make the management choices they need to achieve the outcomes they want. For example, a future vineyard may possess automated imaging that generates a three dimensional model of the vine canopy, highlighting differences from the desired structure and how to use canopy management to improve fruit composition, or generates maps with yield estimates and measurements of berry composition throughout the growing season.

Three proximal sensors to estimate texture, skeleton and soil water storage in vineyards

Proximal sensors are becoming widely used in precision viticulture, due to the quick, easy and non-invasive identification of soil spatial variability. The apparent soil electrical conductivity (ECa) is the main parameter measured by sensors, which is correlated to many factors, like soil water content, salinity, clay content and mineralogy, rock fragments, bulk density, and porosity.