Terroir 2004 banner
IVES 9 IVES Conference Series 9 Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Abstract

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid chromatography-diode array-electrospray ionisation-ion trap mass spectroscopy (MS) for the quantitative and qualitative analysis of a wide range of non-coloured phenolics. Diode array detection was found to be more suitable for quantitative purposes, while on-line UV spectra in combination with mass spectra greatly facilitate the identification of phenolics. Although MS detection was characterised by relatively poor sensitivity (full scan mode) and linear response, this form of detection proved to be an exceedingly powerful identification tool, allowing identification of 20 non-standard compounds in wine. These include procyanidins, epigallocatechin, prodelphinidins (only the second time these compounds are identified in wine), tartaric acid esters of p-coumaric acid and caffeic acid, 3 resveratrol derivatives, myricetin and flavonol-glucosides. It is concluded LC-UV-MS currently represents the state-of-the art in analysis methods for wine polyphenols, combining quantitative and identification capabilities.
The LC-diode array method was subsequently used to quantify 16 phenolic compounds in 55 South African red wines. Values are compared to those reported in the literature for these compounds in wines from other countries. These data were used together with chemometric methods for the characterisation of these wines according to variety. Discriminant analysis allowed a 100% correct recognition of the 5 cultivars studied, independent of the vintage or geographical origin, based on non-coloured phenolic content.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. de Villiers (1), A. Crouch (1), Th. Heidemann (1), P. Majek (2), P. Sandra (1)

(1) University of Stellenbosch, Department of Chemistry, CENSSUS, Private Bag X1, Matieland 7602, South Africa
(2) Slovak University of Technology, Department of Analytical Chemistry, 812 37 Bratislava 1, Slovak Republic

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Using nanopore skim-sequencing to characterise regional epigenetic variability in New Zealand Sauvignon Blanc

Recent advancements in genomic sequencing technologies have enabled more detailed and direct studies of DNA methylation, which can help characterise epigenetic variations in plants. The Grapevine Improvement team at the Bragato Research Institute is studying the use of Oxford Nanopore sequencing to identify epigenetic changes associated with environmental differences among clonally-propagated grapevines.

This study involved sequencing DNA from the same Sauvignon Blanc clone, sourced from diverse New Zealand viticultural regions, using the PromethION platform.

Exploring intra-vineyard variability with sensor- and molecular-based approaches 

The application of remote and proximal sensing is a fast and efficient method to monitor grapevine vegetative and physiological parameters and is considered valuable to derive information on associated yield and quality traits in the vineyard. Further details can be obtained by the application of molecular analysis at the gene expression level aiming at elucidating how pathways controlling the formation of different grape quality traits are influenced by spatial variability. This work aims at evaluating intra-vineyard variability in grape composition at harvest and at comparing this with remotely sensed canopy vegetation data and molecular-based approaches.

Impact of technical itineraries on the diversity and the functioning of arbuscular mycorrhizal fungi and associated microorganisms in vineyards soils and grapevine roots

Context and purpose. The vine is a holobiont, where the plant interacts positively, negatively, and neutrally with microbes that together form the vine’s microbiome.

Techniques of delimitation in France

La pratique de la délimitation des aires des Appellations d’Origine Contrôlées françaises découle de la définition de la notion de terroir en Appellation

What triggers the decision to ripen 

The decision for grape berries to ripen involves a complex interplay of genetic regulation and environmental cues. This review explores the molecular mechanisms underlying the transition from vegetative growth to ripening, focusing on transcriptomic studies and the role of the NAC gene family. Transcriptomic analyses reveal a significant rearrangement of gene expression patterns during this transition, with up-regulation of ripening-related genes and down-regulation of those associated with vegetative growth. A molecular phenology scale providing a high-precision map of berry transcriptomic development, indicates that key molecular changes occur well before the onset of ripening.