Terroir 2004 banner
IVES 9 IVES Conference Series 9 Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Abstract

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid chromatography-diode array-electrospray ionisation-ion trap mass spectroscopy (MS) for the quantitative and qualitative analysis of a wide range of non-coloured phenolics. Diode array detection was found to be more suitable for quantitative purposes, while on-line UV spectra in combination with mass spectra greatly facilitate the identification of phenolics. Although MS detection was characterised by relatively poor sensitivity (full scan mode) and linear response, this form of detection proved to be an exceedingly powerful identification tool, allowing identification of 20 non-standard compounds in wine. These include procyanidins, epigallocatechin, prodelphinidins (only the second time these compounds are identified in wine), tartaric acid esters of p-coumaric acid and caffeic acid, 3 resveratrol derivatives, myricetin and flavonol-glucosides. It is concluded LC-UV-MS currently represents the state-of-the art in analysis methods for wine polyphenols, combining quantitative and identification capabilities.
The LC-diode array method was subsequently used to quantify 16 phenolic compounds in 55 South African red wines. Values are compared to those reported in the literature for these compounds in wines from other countries. These data were used together with chemometric methods for the characterisation of these wines according to variety. Discriminant analysis allowed a 100% correct recognition of the 5 cultivars studied, independent of the vintage or geographical origin, based on non-coloured phenolic content.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. de Villiers (1), A. Crouch (1), Th. Heidemann (1), P. Majek (2), P. Sandra (1)

(1) University of Stellenbosch, Department of Chemistry, CENSSUS, Private Bag X1, Matieland 7602, South Africa
(2) Slovak University of Technology, Department of Analytical Chemistry, 812 37 Bratislava 1, Slovak Republic

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Holistic characterization of Sangiovese clones 

Sangiovese is one of Italy’s most cultivated grape varieties, and currently, over 130 different clones are registered in the national register of grape varieties. However, despite the sangiovese genome having been re-sequenced, limited molecular and genomic information is still available for this cultivar. The present study investigates the complexity of genotype-environment interactions of ten different Sangiovese clones, cultivated in the Chianti Rufina DOCG district over five consecutive vintages (2016-2020).

Use of pectinolytic yeast in wine fermentations

The use of pectinolytic enzymes in winemaking is state of the art. These enzymes catalyse the degradation of pectic substances through depolymerization (hydrolases and lyases) and de-esterification. As a result, it supports the extraction of juice and facilitates filtration. It has also been shown in winemaking that the presence of pectinolytic enzymes improves the stability, taste, texture, colour and aroma of products. With regard to enzymes currently applied in winemaking, enzymes derived from filamentous fungi dominate the enzyme industry. Fungal-based pectinolytic enzymes specifically require purification from the culture medium to eliminate unwanted side reactions, which is poorly sustainable. Some non-traditional yeast strains have been reported to exhibit pectinolytic activities. Therefore, the direct use of pectinolytic yeast during wine fermentation process can be an attractive and alternative source for the use of enzymes as input.

PRECISE AND SUSTAINABLE OENOLOGY THROUGH THE OPTIMIZED USE OF AD- JUVANTS: A BENTONITE-APPLIED MODEL OF STUDY TO EXPLOIT

As wine resilience is the result of different variables, including the wine pH and the concentration of wine components, a detailed knowledge of the relationships between the adjuvant to attain stability and the oenological medium is fundamental for process optimization and to increase wine durability till the time of consumption.

Typicité et terroir : importance relative du type de sol et du niveau de maturité dans la typologie sensorielle du vin

Le lien fonctionnel entre typicité et terroir a été étudié en prenant en compte deux dimensions importantes : le type de sol et la date de vendanges. Ces deux facteurs sont, à des degrés divers

Genetic traceability of the varietal origin of wines: a robust application for must and wines during alcoholic fermentation

Industry and regulatory agencies have developed regulations to ensure authenticity and compliance with wine composition limits. However, this can be truncated by the absence of simple and robust analytical methodologies, uninfluenced by the environment, different oenological techniques and cultural practices. Genetic fingerprinting is the most powerful tool for unequivocal varietal identification; it is not affected by the environment or agronomic practices; however, its usefulness in musts and wines has been controversial and there is currently no routine certification of varietal origin based on DNA analysis.