Terroir 2004 banner
IVES 9 IVES Conference Series 9 Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Analytical and Chemometric Investigation of Phenolic Content of South African Red Wines

Abstract

Phenolic compounds have been the focus of a lot of research in recent years for their important contribution to sensory characteristics of wine, their beneficial health effects, as well as the possibility they offer of characterising wines. In this contribution, a method is developed that allows the direct injection of wine samples followed by liquid chromatography-diode array-electrospray ionisation-ion trap mass spectroscopy (MS) for the quantitative and qualitative analysis of a wide range of non-coloured phenolics. Diode array detection was found to be more suitable for quantitative purposes, while on-line UV spectra in combination with mass spectra greatly facilitate the identification of phenolics. Although MS detection was characterised by relatively poor sensitivity (full scan mode) and linear response, this form of detection proved to be an exceedingly powerful identification tool, allowing identification of 20 non-standard compounds in wine. These include procyanidins, epigallocatechin, prodelphinidins (only the second time these compounds are identified in wine), tartaric acid esters of p-coumaric acid and caffeic acid, 3 resveratrol derivatives, myricetin and flavonol-glucosides. It is concluded LC-UV-MS currently represents the state-of-the art in analysis methods for wine polyphenols, combining quantitative and identification capabilities.
The LC-diode array method was subsequently used to quantify 16 phenolic compounds in 55 South African red wines. Values are compared to those reported in the literature for these compounds in wines from other countries. These data were used together with chemometric methods for the characterisation of these wines according to variety. Discriminant analysis allowed a 100% correct recognition of the 5 cultivars studied, independent of the vintage or geographical origin, based on non-coloured phenolic content.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

A. de Villiers (1), A. Crouch (1), Th. Heidemann (1), P. Majek (2), P. Sandra (1)

(1) University of Stellenbosch, Department of Chemistry, CENSSUS, Private Bag X1, Matieland 7602, South Africa
(2) Slovak University of Technology, Department of Analytical Chemistry, 812 37 Bratislava 1, Slovak Republic

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Viticulture, landscapes and the marketing of our wine

The global wine market is polarising over brands versus origin. Provenance is emerging as a marketing megatrend in many fast moving consumer goods. Origin has always been important in wine but does that mean consumers understand, or care about terroir?

Deconstructing the soil component of terroir: from controversy to consensus

Wine terroir describes the collectively recognized relation between a geographical area and the distinctive organoleptic characteristics of the wines produced in it. The overriding objective in terroir studies is therefore to provide scientific proof relating the properties of terroir components to wine quality and typicity. In scientific circles, the role of climate (macro-, meso- and micro-) on grape and wine characteristics is well documented and accepted as the most critical. Moreover, there has been increasing interest in recent years about new elements with possible importance in shaping wine terroir like berry/leaf/soil microbiology or even aromatic plants in proximity to the vineyard conferring flavors to the grapes. However, the actual effect of these factors is also dependent on complex interactions with plant material (variety/clone, rootstock, vine age) and with human factors.
The contribution of soil, although a fundamental component of terroir and extremely popular among wine enthusiasts, remains a much-debated issue among researchers. The role of geology is probably the one mostly associated by consumers with the notion of terroir with different parent rocks considered to give birth to different wine styles. However, the relationship between wine properties and the underlying parent material raises a lot of controversy especially regarding the actual existence of rock-derived flavors in the wine (e.g. minerality). As far as the actual soil properties are concerned, the effect of soil physical properties is generally regarded as the most significant (e.g sandy soils being associated with lighter wines while those on clay with colored and tannic ones) mostly through control of water availability which ultimately modifies berry ripening conditions either directly by triggering biosynthetic pathways, or indirectly by altering vigor and yield components. The role of soil chemistry seems to be weakly associated to wine sensory characteristic, although N, K, S and Ca, but also soil pH, are often considered important in the overall soil effect.
Recently, in the light of evidence provided by precision agriculture studies reporting a high variability of vineyard soils, the spatial scale should also be taken into consideration in the evaluation of the soil effects on wines. While it is accepted that soil effects become more significant than climate on a local level, it is not clear whether these micro-variations of vineyard soils are determining in the terroir effect. Moreover, as terroir is not a set of only natural factors, the magnitude of the contribution of human-related factors (irrigation, fertilization, soil management) to the soil effect still remains ambiguous. Lastly, a major shortcoming of the majority of works about soil effects on wine characteristics is the absence of connection with actual vine physiological processes since all soil effects on grape and wine chemistry and sensorial properties are ultimately mediated through vine responses.
This article attempts to breakdown the main soil attributes involved in the terroir effect to suggest an improved understanding about soil’s true contribution to wine sensory characteristics. It is proposed that soil parameters per se are not as significant determining factors in the terroir effect but rather their mutual interactions as well as with other natural and human factors included in the terroir concept. Consequently, similarly to bioclimatic indices, composite soil indices (i.e. soil depth, water holding capacity, fertility, temperature etc), incorporating multiple soil parameters, might provide a more accurate and quantifiable means to assess the relative weight of the soil component in the terroir effect.

Reduce sulfur dioxide addition using a natural polymer chitosan phytate

Most oxidation reactions in wine require iron as a catalyst. The iron content of wine has decreased greatly in recent decades due to the use of low or no release cellar materials; however, in some cases it is still necessary to adopt winemaking practices to remove excess iron from wine, prevent its oxidation, and be able to reduce the addition of sulfur dioxide and other antioxidants.

Aroma diversity of Amarone commercial wines

Amarone is an Italian red wine produced in the Valpolicella area, in north-eastern Italy. Due to its elaboration with withered grapes, Amarone is a rather unique example of dry red wine. However, there is very limited data so far concerning the volatile composition of commercial Amarone wines, which also undergo a cask aging of 2-4 years before release.

Improvement of the red wine AOC Grignolino d’Asti typicality using some technological innovations

L’AOC Grignolino d’Asti (20000 hl environ de production) est un vin de la province de Asti, produit avec le raisin rouge du cépage de même nom originaire du Piémont (Nord-Ouest d’Italie).