Terroir 2004 banner
IVES 9 IVES Conference Series 9 Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Contribution of phenolic compounds to the total antioxidant capacity of Pinotage wine

Abstract

The South African wine industry is taking an interest in the enhancement of red wine total antioxidant capacity (TAC) with retention of sensory quality to satisfy the demands of increasingly discerning consumers. The focus is especially on the unique South African red wine cultivar, Pinotage. Pinotage has a unique phenolic composition and commercial Pinotage wines (1998 vintage) has an average TAC of 15.3 mM Trolox equivalents which compares well with that of Cabernet Sauvignon. Knowledge of wine phenolic composition, the antioxidant activity of individual phenolic compounds and their respective contribution to the TAC of wines are needed to evaluate the importance of individual phenolic compounds. The TAC of wines could then be manipulated optimally by using viticultural and enological practices to enhance the content of compounds contributing significantly to the TAC. The aim of the study was to determine the antioxidant activity of individual phenolic compounds in Pinotage wines and their contribution to TAC.
A series of 20 young Pinotage wines were analysed to determine their phenolic composition (reversed-phase HPLC) and TAC (ABTS radical cation scavenging assay). Compounds identified include gallic acid, caftaric acid, caffeic acid, coutaric acid, catechin, procyanidin B1, myricetin-3-glucoside (glc), quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc, delphinidin-3-glc-acetate, vitisinA, petunidin-3-glc-acetate, peonidin-3-glc-acetate, malvidin-3-glc-acetate and malvidin-3-glc-coumarate. The polymeric content of each wine was also estimated as mg catechin equivalents/L. Individual phenolic compounds, available as pure standards (gallic acid, caffeic acid, catechin, procyanidin B1, myricetin-3-glc, quercetin-3-glc, kaempferol-3-glc, quercetin-3-rhamnoside, myricetin, quercetin, kaempferol, isorhamnetin, delphinidin-3-glc, peonidin-3-glc, petunidin-3-glc, malvidin-3-glc), were tested at a range of concentrations and their Trolox equivalent antioxidant capacity (TEAC) values calculated.
Taking the concentration and TEAC values of 24 monomeric phenolic compounds which could be quantified, into account, only 14% of the TAC of the wines could be explained. Possible synergism was ruled out, as the measured and calculated TAC of a mixture of phenolic standards was within the experimental error. Sulphur dioxide additions to the phenolic mixtures at two concentrations had no effect on their TAC. To estimate the contribution of polymeric compounds ultrafiltration was performed in an attempt to separate monomers and polymers in 3 wines. The polymeric compounds, and possibly proteins, isolated using ultrafiltration (50000 dalton nominal molecular weight cut-off), contribute about 30% of their TAC values. A large fraction (59%) of the TAC of a wine is due to unknown compounds which may or may not be phenolic.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Dalene de Beer (1), Elizabeth Joubert (2), Johann Marais (2), Marena Manley (1)

(1) Department of Food Science, Stellenbosch University, Private Bag X1, Matieland, 7602, South Africa
(2) Post-Harvest and Wine Technology, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch, 7599, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Climatic zoning of viticultural production periods over the year in the tropical zone: application of the methodology of the Géoviticulture MCC system

L’objectif de cette recherche est le zonage climatique des périodes viticoles de l’année dans la Vallée du São Francisco, région brésilienne productrice de vins située en climat tropical semi-aride. Dans cette région, la production peut être échelonnée sur tous les mois de l’année.

Study to optimize the effectiveness of copper treatments for low impact viticulture

Among all pathologies that afflict grapevine, Downy Mildew (DM) is the most important. Generally controlled using Copper (Cu), recently European Commission confirmed its usage but limiting the maximum amount to 28 Kg per hectare in 7 years (Reg. EU 2018/1981).

Dalle zonazioni storiche alle “nuove forestazioni storiche produttive vitivinicole” per la valorizzazione delle cultivar e dei prodotti tipici ed originali dei Monti Iblei

Analisi sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” per impostare innovative zonazioni vitivinicole e dei prodotti tipici, originali attraverso la “Nuova forestazione storica produttiva”. Le recenti ricerche ed attività svolte sulle zonizzazioni storiche, sulle produzioni tipiche ed originali e sulla “forestazione classica” dei Monti Iblei (Ragusa) (I) hanno permesso di rilanciare le produzioni tipiche ed originali vitivinicole in un innovativo programma integrato tra zonazione (“Grande Zonazione”) e “Nuova forestazione storica produttiva” (“Grande Forestazione Produttiva”) di questo importante territorio.

Loose clustered vignoles clones reduce late season fruit rots

‘Vignoles’ is an aromatic, white-fruited wine grape variety valued by growers and wineries in the Eastern United States. Vignoles is grown in diverse locations in New York, Missouri, Indiana, Ohio, Pennsylvania, Illinois, Nebraska and Michigan. Consumers recognize and value the variety for its special wine quality.

Mapping terroirs at the reconnaissance level, by matching soil, geology, morphology, land cover and climate databases with viticultural and oenological results from experimental vineyards

This work was aimed at setting up a methodology to define and map the «Unités Terroir de Reconnaissance» (UTR), combining environmental information stored in a Soil Information System with experimental data coming from benchmark vineyards of Sangiovese vine.