Terroir 2004 banner
IVES 9 IVES Conference Series 9 Distribution and associated symptoms of grapevine trunk pathogens in South Africa

Distribution and associated symptoms of grapevine trunk pathogens in South Africa

Abstract

In recent studies, several grapevine trunk pathogen complexes have been identified from grapevines in South Africa. These pathogens include Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium sp., Botryosphaeria sp. and Phomopsis sp. Trunk diseases lead to reduced yield, and grape quality as well as a decline and premature dieback of grapevines. Infection occurs as early as the propagation processes, or during the subsequent vineyard development. As these pathogens infect mainly through wounds, most research has focussed on the protection of pruning wounds. However, climatic differences between different grape growing regions would likely affect the demographics of regional pathogen populations. In order to develop management strategies for specific regions, it was therefore necessary to determine the distribution of grapevine trunk disease pathogens in different grape growing regions of South Africa.
During October 2003 – April 2004, a survey of visually healthy grapevines was conducted in 10+ year-old Cabernet Sauvignon vineyards in Stellenbosch, Malmesbury, Vredendal, and Robertson (3 vineyards from each region). In the fifth region, Upington, Ruby Cabernet vineyards were sampled. Samples consisting of the two distel cordon pieces (including the last spurs on each side) were collected from twenty grapevines in each vineyard. The occurrence of trunk disease pathogens was determined by doing isolations onto potato dextrose agar from all the different wood decay symptom types that were observed in cross sections of the samples. Plates were incubated for 2 – 4 weeks before the isolated fungi were identified based on morphological or molecular characteristics.
Internal wood symptoms ranged from black and brown vascular streaking, brown V-shaped lesions, brown watery lesions, brown internal necrosis and Esca associated symptoms. The isolations clearly showed that specific symptom types could not be attributed to one single pathogen but that overlap of symptoms occurred between pathogens. The dominating pathogens across the five surveyed areas were Pa. chlamydospora and Botryosphaeria sp., which were isolated two to four times more frequently than Phaeoacremonium sp. and Phomopsis sp. In the cooler regions of Stellenbosch and Malmesbury, the dominating pathogens were Pa. chlamydospora and Phaeoacremonium sp., while Botryosphaeria sp. occurred more frequently in the hotter regions of Robertson, Vredendal and Upington. Relatively low numbers of Eutypa lata were recorded with the Stellenbosch area having the highest occurrence of the fungus. These results therefore indicate that the demographics of trunk disease pathogen populations differ between climatically different areas. Pruning wound protection strategies should consequently be adjusted accordingly.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.M. van Niekerk (1), P.H. Fourie (1) and F. Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South
Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South
Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Mixed starters Schizosaccharomyces japonicus/Saccharomyces cerevisiae as a novel tool to improve the aging stability of Sangiovese wines

In the present work Schizosaccharomyces japonicus and Saccharomyces cerevisiae were inoculated simultaneously or in sequence in mixed fermentation trials with the aim of testing their ability to improve the overall quality of red wine

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Evaluation of winegrape anthocyanins in the vineyard using a portable fluorimetric sensor: seasonal and water regime effects

Accumulation of anthocyanins (Anth) on whole winegrape (Vitis vinifera L.) bunches attached to the vine was monitored by a fluorescence-based sensor (Multiplex) on ‘Aleatico’ and ‘Nero d’Avola’. Different water regimes were applied.

Étude de la cinétique de transfert du 2,4,6-trichloroanisole (TCA) entre des bouchons en liège naturel et le vin – premiers résultats

The last step in winemaking is packaging the wines for market placement, while preserving the quality attained during vinification. Since the 1980s, 2,4,6-trichloroanisole (TCA) has been recognised as an incidental and random contaminant of cork, with its migration into wine thought to contribute to ‘cork taint’. This molecule is not a cork component and little is known about how it is formed on trees. Its formation from the chlorine used to wash the cork stoppers, long suspected, has been excluded by the abandonment of chlorine washing.

Extraction of pathogenesis-related proteins and phenolics in Sauvignon Blanc as affected by different

The composition of wine is largely determined by the composition of pre-fermentation juice, which is influenced by extraction of grape components. Different grape harvesting and processing conditions could affect the extraction of grape components into juice. Among these grape components, pathogenesis-related (PR) proteins are of great concern for white wine maker as they are the main cause of haze formation in finished white wine. If not removed before bottling, these PR proteins may progress into haze through the formation of complex with phenolics under certain conditions. Thaumatin-like proteins (TLPs) and chitinases are the main constituents of PR proteins found in protein haze.