Terroir 2004 banner
IVES 9 IVES Conference Series 9 Distribution and associated symptoms of grapevine trunk pathogens in South Africa

Distribution and associated symptoms of grapevine trunk pathogens in South Africa

Abstract

In recent studies, several grapevine trunk pathogen complexes have been identified from grapevines in South Africa. These pathogens include Eutypa lata, Phaeomoniella chlamydospora, Phaeoacremonium sp., Botryosphaeria sp. and Phomopsis sp. Trunk diseases lead to reduced yield, and grape quality as well as a decline and premature dieback of grapevines. Infection occurs as early as the propagation processes, or during the subsequent vineyard development. As these pathogens infect mainly through wounds, most research has focussed on the protection of pruning wounds. However, climatic differences between different grape growing regions would likely affect the demographics of regional pathogen populations. In order to develop management strategies for specific regions, it was therefore necessary to determine the distribution of grapevine trunk disease pathogens in different grape growing regions of South Africa.
During October 2003 – April 2004, a survey of visually healthy grapevines was conducted in 10+ year-old Cabernet Sauvignon vineyards in Stellenbosch, Malmesbury, Vredendal, and Robertson (3 vineyards from each region). In the fifth region, Upington, Ruby Cabernet vineyards were sampled. Samples consisting of the two distel cordon pieces (including the last spurs on each side) were collected from twenty grapevines in each vineyard. The occurrence of trunk disease pathogens was determined by doing isolations onto potato dextrose agar from all the different wood decay symptom types that were observed in cross sections of the samples. Plates were incubated for 2 – 4 weeks before the isolated fungi were identified based on morphological or molecular characteristics.
Internal wood symptoms ranged from black and brown vascular streaking, brown V-shaped lesions, brown watery lesions, brown internal necrosis and Esca associated symptoms. The isolations clearly showed that specific symptom types could not be attributed to one single pathogen but that overlap of symptoms occurred between pathogens. The dominating pathogens across the five surveyed areas were Pa. chlamydospora and Botryosphaeria sp., which were isolated two to four times more frequently than Phaeoacremonium sp. and Phomopsis sp. In the cooler regions of Stellenbosch and Malmesbury, the dominating pathogens were Pa. chlamydospora and Phaeoacremonium sp., while Botryosphaeria sp. occurred more frequently in the hotter regions of Robertson, Vredendal and Upington. Relatively low numbers of Eutypa lata were recorded with the Stellenbosch area having the highest occurrence of the fungus. These results therefore indicate that the demographics of trunk disease pathogen populations differ between climatically different areas. Pruning wound protection strategies should consequently be adjusted accordingly.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

J.M. van Niekerk (1), P.H. Fourie (1) and F. Halleen (2)

(1) Department of Plant Pathology, University of Stellenbosch, Private Bag X1, Matieland 7602, South
Africa
(2) Disease Management, ARC Infruitec-Nietvoorbij, Private Bag X5026, Stellenbosch 7599, South
Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

About long time and vine quality modelisation e pistemological appro ach to geographical viticulture

This work began as an intellectual game, in order to discuss the notion of wine quality in terms of terroir and territory spatial structure. Vine and wine quality has long been questioned by scientists. Each discipline approaching it with his own tools.

Viticultural agroclimatic cartography and zoning at mesoscale level using terrain information, remotely sensed data and weather station measurements. Case study of Bordeaux winegrowing area

Climate is a key variable for grapevine development and berry ripening processes. At mesoscale level, climate spatial variations are often determined empirically, as weather station networks are generally not dense enough to account for local climate variations.

Identification of arbuscular mycorrhizal fungi species preferentially associated with grapevine roots inoculated with commercial bioinoculants 

Arbuscular mycorrhizal fungi (AMF) form symbiotic associations with plant roots and can help plants acquire nutrients from the soil in exchange for photosynthetic carbon. Commercial bioinoculants containing AMF are widely available and represent a potential opportunity to reduce the dependence of grapevines on agrochemicals. However, which commercially available AMF species colonize vine roots and affect vine growth remains unknown. The aim of this study was to identify the AMF species from commercial bioinoculants that colonize grapevine roots using high-throughput sequencing, and to evaluate the performance of five commercial bioinoculants and their effects on own-rooted Cabernet sauvignon.

Discrimination of South Tyrol’s wines by their cultivation practices: A detailed mass spectrometric approach

Climate change is having a profound effect on viticulture by altering the conditions under which vines grow, leading to increased water stress and earlier harvests, which in turn affect the quality and character of wines [1].

Adsorption of tetraconazole by organic residues and vineyard organically-amended soils 

Spain is the country with the largest wine-producing area in the EU and its productivity is largely controlled applying fungicides. However, residues of these compounds can move and contaminate surface and groundwater. The objective of this work was to evaluate the capacity of bioadsorbents from different origin to adsorb and immobilize tetraconazole by themselves or when applied as organic soil amendment, and to prevent soil and water contamination by this fungicide. The adsorption of tetraconazole by 3 organic residues: spent mushroom substrate (SMS), green compost (GC) and vine pruning sawdust (VP), as well as by vineyard soils unamended and amended individually with these residues at 1.5% (w/w) was evaluated using the batch equilibrium technique.