Terroir 2004 banner
IVES 9 IVES Conference Series 9 Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Influence of Partial Rootzone Drying on grape and wine anthocyanin composition

Abstract

The effect of Partial Rootzone Drying (PRD) on fruit and wine composition has been investigated. At harvest, total anthocyanin and phenolic concentration of Shiraz and Cabernet Sauvignon fruit was either unaltered or increased by PRD relative to control irrigation over two seasons. Where there was an increase in anthocyanin concentration with PRD, this was independent of berry size. In the 2002 season, total colour of Cabernet Sauvignon wine was enhanced by 10% in response to the PRD treatment although total anthocyanin concentration was unaltered in either fruit or wine. This colour enhancement was maintained after a year’s ageing in the bottle and was due to an increase in coloured pigments in co-pigmented or polymeric form, that is, in association with other anthocyanins or phenolic compounds. In both fruit and wine samples, PRD caused a decrease in the contribution of malvidin-glucosides to total anthocyanins. Thus, levels of non-malvidin glucosides, namely delphinidin and cyanidin were increased by PRD. This effect was investigated as fruit matured post-veraison, and was evident from early in berry development. Preliminary results indicate that this response requires the presence of high incident light levels to the bunch zone during development, but it is not mediated by increased bunch exposure alone. Shading of fruit led to a significant decrease in all anthocyanin types, and caused a shift in the ratio of acetyl- and 3p-coumaryl-glucosides to mono-glucosides. The PRD treatment, however, did not lead to changes in the proportions of acetyl-, 3p-coumaryl- and mono-glucoside anthocyanins. These results show that the response of the anthocyanin pathway to the PRD is most likely mediated by physiological signals within the fruit and vine, rather than due to a change in bunch microclimate.

DOI:

Publication date: January 12, 2022

Issue: Terroir 2004

Type: Article

Authors

Keren Bindon

Department of Viticulture and Oenology, Institute for Wine Biotechnology, Stellenbosch University, Victoria Street, ZA 7600 Stellenbosch, South Africa

Contact the author

Tags

IVES Conference Series | Terroir 2004

Citation

Related articles…

Physiological and growth reaction of Shiraz/101-14 Mgt to row orientation and soil water status

Advanced knowledge on grapevine row orientation is required to improve establishment, management and outcomes of vineyards on terroirs with different environmental conditions (climate, soil, topography) and in view of a future change to more extreme climatic conditions. The purpose of this study was to determine the combined effect of row orientation, plant water status and ripeness level on the physiological and viticultural reaction of Shiraz/101-14 Mgt.

Effects of mechanical leafing and deficit irrigation on Cabernet Sauvignon grown in warm climate of California

San Joaquin Valley accounts for 40% of wine grape acreage and produces 70% of wine grape in California. Fruit quality is one of most important factors which impact the economical sustainability of farming wine grapes in this region. Due to the recent drought and expected labor cost increase, the wine industry is thrilled to understand how to improve fruit quality while maintaining the yield with less water and labor input. The present study aims to study the interactive effects of mechanical leafing and deficit irrigation on yield and berry compositions of Cabernet Sauvignon grown in warm climate of California.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

Application of a fluorescence-based method to evaluate the ripening process and quality of Pinot Blanc grape

The chemical composition of grape berries at harvest is one of the most important factors that should be considered to produce high quality wines. Among the different chemical classes which characterize the grape juice, the polyphenolic compound, such as flavonoids, contribute to the final taste and color of wines. Recently, an innovative non-destructive method, based on chlorophyll fluorescence, was developed to estimate the phenolic maturity of red grape varieties through the evaluation of anthocyanins accumulated in the berry skin. To date, only few data are available about the application of this method on white grape varieties.

Different yield regulation strategies in semi-minimal-pruned hedge (SMPH) and impact on bunch architecture

Yields in the novel viticulture training system Semi-Minimal-Pruned Hedge (SMPH) are generally higher compared to the traditional Vertical Shoot Positioning (VSP). Excessive yields have a negative impact on the vine and wine quality, which can result in substantial losses in yield in subsequent vintages (alternate bearing) or penalties in fruit quality. Therefore yield regulation is essential. The bunch architecture in SMPH differs from VSP. Generally there is a higher amount but smaller bunches with lower single berry weights in SMPH compared to VSP.