Terroir 1996 banner
IVES 9 IVES Conference Series 9 Port wine region settling

Port wine region settling

Abstract

Cet exposé présente une caractérisation générale de la Région Délimitée du Douro (RDD), productrice des appellations Porto (vins généreux), et Douro pour des vins de qualité VQPRD.
Un bref historique de la viticulture de la Région est fait depuis sa première délimitation en 1756 jusqu’à sa dernière division administrative en 1907, en se référant aux critères généraux de la classification des vignobles en fonction de leur potentiel qualitatif pour la production du vin de Porto. La nature des sols est décrite, ainsi que la classification climatique des trois sous-régions que la RDD comprend. Sont aussi abordées les différents solutions d’implantation de la vigne en coteau de grande pente et les aspects généraux de sa culture.
Enfin, la technologie de production des vins généreux est décrite, ainsi que les différents types de vins de Porto produits.

In this presentation we start with a general characterization of the Douro Region in which can be identified the Port denomination and non fortified wines VQPRD. First we present an overview of the histocy of the viticulture on the Region since 1756, which corresponds to the first delimitation, up to 1907, the last administrative division.
At this time was also defined the general criteria for the classification of the vines, according to the quality potential for the production of Port wine.
The Port wine region is divided into three sub-regions and the soils and climate characteristics are presented.
Since this region is characterized by deep slopes it is presented the different solutions for vine settling as well as technical practices involved in each system. Finally it is referred all the technology which is peculiar of the Port wine making process and the correspondent Port wine types.

 

 

 

DOI:

Publication date: February 16, 2022

Issue: Terroir 2002

Type: Article

Authors

Fernando Bianchi de Aguiar (1) and Nuno Magalhães (2)

(1) Ministerio da Agricultura, do Desenvolvimento rural e das pescas
(2) Universidad de Tras-os-Montes e Douro, Apartado 220, 5001 VILA REAL CEDEX (Portugal)

Keywords

Douro, Vin de Porto, Terroir
Douro, Port Wine, Terroir

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Evaluation of Acıkara (Vitis vinifera L.) native grape variety of anatolia for red wine production potential

The acıkara grape variety, a nearly forgotten native black variety in Anatolia/Turkey, has recently gained interest in its potential for producing high-quality wine from producers and consumers. The potential of producing high-quality red wine from the Acıkara grape variety (vitis vinifera), which is cultivated on the elmalı/antalya in the highland (1100 m altitude) of western mediterranean region, was investigated, and the suitability of the wine’s characteristics associated with high-quality red wine was determined.

Influence of irrigation frequency on berry phenolic composition of red grape varieties cultivated in four spanish wine-growing regions

The global warming phenomenon involves the frequency of extreme meteorological events accompanied by a change in rainfall distribution. Irrigation frequency (IF) affects the spatial and temporal soil water distribution but its effects on the phenolic composition of the grape have been scarcely studied. The aim of this work was to evaluate the effects of four deficit irrigation frequencies of 30 % ETo: one irrigation per day (T01), two irrigations per week (T03), one irrigation per week (T07) and one irrigation every two weeks (T15) on berry phenolic composition at harvest.

Spiders in vineyards show varying effects of inter-row management and the surrounding landscape

In vineyards, management and the surrounding landscape can have different effects on spiders. In temperate regions management (organic vs. conventional) may have less strong effects than for other crops.

Atmospheric modeling: a tool to identify locations best suited for vine cultivation. Preliminary results in the Stellenbosch region

The choice of sites for viticulture depends on natural environmental factors, particularly climate, as grapevines have specific climatic requirements for optimum physiological performance and berry quality achievement. In the Stellenbosch wine-producing region, the complex topography and the proximity of the ocean create a variety of topoclimates resulting in different growth conditions for vines within short distances.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.