GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 GiESCO 2019 9 From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries

From average to individual fruit, a paradigm shift for accurate analysis of water accumulation and primary metabolism in developing berries


Context and purpose of the study ‐ Presentknowledge about grape development is mainly driven by the premise that a typical berry would follow the same kinetics as the population average, the principal challenge being to gather representative samples. In this frame, the elaboration of harvest quality directly reflects the impact of the GenotypexEnvironment interaction on fruit metabolism. Much energy is then being devoted to identifying the sites that regulate grape metabolism, upon screening more and more genes and metabolites, and developing virtual berry models simulating sugar and water accumulation in the future harvest. Nevertheless, successive physiological stages never coexist in a fruit and one may wonder whether the “average physiological stage” paradigm does not inevitably lead to a dead end. The strict foundations of berry developmental biology are critically revisited here.

Material and methods – Disparate literature data on the intensity and duration of the second growth period were re‐interpreted, validated and clarified, upon non‐destructive analysis of single berry firmness and growth, on different cultivars in the experimental vineyard of Supagro, as well as on microvines grown in greenhouses. Organic acids and sugars were measured by HPLC on thousands individual berries of Syrah, Pinot and Zinfandel.

Results ‐ Previously unsuspected sub‐periods emerged from the developmental patterns of sugar, water and malic acid flows on single berries, metabolic fluxes and kinetic data being noticeably stable among all investigated cultivars. Berries accumulated sugars at nearly constant volume during the first week following softening, indicating intense xylem back‐flow at this stage. This first period of ripening was also characterized by a net malic acid/4 hexoses exchange consistent with the operation of a sucrose/H+ exchanger at the tonoplast membrane, in usual conditions and genotypes. Aerobic fermentation and vacuolar proton pumps were induced later, while vacuolar malic acid was progressively exhausted, without compromising sugar and water accumulation. As a matter of fact, phloem unloading definitively stopped 28 days after softening. It clearly appeared that the individual fruit develops in a far more determined, reproducible and finally intelligible way than has been predicted so far, based on average samples.New phenotyping procedures were consequently designed for genetic studies, improving heritability and QTLs detection.Switching from fruit genomics and physiology to harvest quality requires a real change in scale, from the fruit to the population. The determinant role of berries asynchrony within the population can’t be ignored any longer, but the impact of the GxE interaction on the population structure essentially remains terra incognita. 


Publication date: June 19, 2020

Issue: GiESCO 2019

Type: Article


Rezk SHAHOOD (1), Stefania SAVOI (2), Antoine BIGARD (2), Laurent TORREGROSA (2), Charles ROMIEU (2)

(1) General Commission for Scientific Agricultural Research, Latakia, Syria
(2) AGAP, Montpellier University, CIRAD, INRA, Montpellier SupAgro, Montpellier, France

Contact the author


grape, berry development, development asynchronism, metabolism, ripening


GiESCO 2019 | IVES Conference Series


Related articles…

Comparison of imputation methods in long and varied phenological series. Application to the Conegliano dataset, including observations from 1964 over 400 grape varieties

A large varietal collection including over 1700 varieties was maintained in Conegliano, ITA, since the 1950s. Phenological data on a subset of 400 grape varieties including wine grapes, table grapes, and raisins were acquired at bud break, flowering, veraison, and ripening since 1964. Despite the efforts in maintaining and acquiring data over such an extensive collection, the data set has varying degrees of missing cases depending on the variety and the year. This is ubiquitous in phenology datasets with significant size and length. In this work, we evaluated four state-of-the-art methods to estimate missing values in this phenological series: k-Nearest Neighbour (kNN), Multivariate Imputation by Chained Equations (mice), MissForest, and Bidirectional Recurrent Imputation for Time Series (BRITS). For each phenological stage, we evaluated the performance of the methods in two ways. 1) On the full dataset, we randomly hold-out 10% of the true values for use as a test set and repeated the process 1000 times (Monte Carlo cross-validation). 2) On a reduced and almost complete subset of varieties, we varied the percentage of missing values from 10% to 70% by random deletion. In all cases, we evaluated the performance on the original values using normalized root mean squared error. For the full dataset we also obtained performance statistics by variety and by year. MissForest provided average errors of 17% (3 days) at budbreak, 14% (4 days) at flowering, 14.5% (7 days) at veraison, and 17% (3 days) at maturity. We completed the imputations of the Conegliano dataset, one of the world’s most extensive and varied phenological time series and a steppingstone for future climate change studies in grapes. The dataset is now ready for further analysis, and a rigorous evaluation of imputation errors is included.

Evaluation of vineyards, fruit and wine affected by wild fire smoke

Wineries may randomly reject fruit from vineyards near wild fires exposed to smoke. It is difficult to determine if fruit has been compromised in quality when exposed to smoke

The use of fluorescence spectroscopy to develop a variability index and measure grape heterogeneity

AIM This work aims to investigate fluorescence spectroscopy as a tool to assess grape homogenates to discriminate between samples of varying maturities and to develop an index to objectively characterise the level of grape heterogeneity present in any given vineyard.

Vineyard floor management intensity impacts soil health indicators and biodiversity across South Australian viticultural landscapes

Vineyard floors in warm, dry landscapes including those in South Australia, have traditionally been managed using intensive practices such as tillage and herbicides to control weeds and vegetation, thereby limiting competition with grapevines for water and nutrients in order to not compromise yields.

Relative impact of crop size and leaf removal on aromatic compounds and phenolic acids of Istrian Malvasia wine

Although several studies investigated the impact of crop size or fruit zone microclimate on aromatic or phenolic composition of wines, the effects of these two practices were not assessed and compared in the same study through a technological experiment within the same vineyard. Therefore, their relative effectiveness is hard to compare, which in turn is essential for providing producers with valuable information as a basis to choose adequate approach in yield and canopy management. The aim of the study was to investigate the effects of two crop sizes and two different fruit zone microclimate conditions obtained by leaf removal in a two-factorial experiment, in order to assess and compare their relative impact on Istrian Malvasia (Vitis vinifera L.) white wine aroma and phenolic composition.