WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 What happens with the glutathione during winemaking and the storage of the wine?

What happens with the glutathione during winemaking and the storage of the wine?

Abstract

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H). This last molecule was reported first in wine by Arapatsis et al. (2016), who described the reaction between SO2 and GSSG resulting GSH and GSSO3H. Theoretically, GSH can further react with SO2, but this reaction is slow. This results obtained in model wine was now proved in grape juice, by measuring the kinetic of the reaction after the addition of SO2. For this purpose a LC-MS/MS analysis method was developed, which allows for the first time the quantification of GSSO3H beside of GSH and GSSG in the wine. 

The analyses of samples taken in the different moment of winemaking shows that in the must only GSH and GSSG are present. GSSO3H appears after the addition of SO2 at the end of the alcoholic fermentation. It appears also to be the dominant form of glutathione in SO2 containing wines after 3 months storage. The analysis of a hundred of wines showed a correlation between the relative concentration of GSSO3H and the total SO2 level of the wine. Temperature also effects the reaction rate. Grape variety does not seem to influence the formation of GSSO3H. 

We could conclude that SO2 contribute to release active GSH from the GSSG and so extend the protection potential against oxidation during the first months of storage. It remains the questions: Does GSSO3H have any antioxidant activity? Further investigation would be needed to address this question. However, in the meantime, its quantification is important in the wine to avoid underestimating the glutathione content.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Ágnes Dienes-Nagy, Frédéric Vuichard, Sandrine Belcher, Marie Blackford, Johannes Rösti, Fabrice Lorenzini

Presenting author

Ágnes Dienes-Nagy – Agroscope, 1260 Nyon, Switzerland

Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland| Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

glutathione, wine, glutathione-S-sulfonate, LC-MS/MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

YEAST DERIVATIVE PRODUCTS: CHARACTERIZATION AND IMPACT ON RIBOFLAVIN RELEASE DURING THE ALCOHOLIC FERMENTATION

Light-struck taste (LST) is a wine fault that can occur in white and sparkling wines when exposed to light. This defect is mainly associated to the formation of methanethiol and dimethyl disulfide due to light-induced reactions involving riboflavin (RF) and methionine [1]. The presence of RF in wine is mainly due to the metabolism of yeast [2] which fermenting activity can be favoured by using yeast derivative products (YDPs) as nutrients. Nonetheless, a previous study showed the addition of YDPs before the alcoholic fermentation (AF) led to higher concentrations of RF in wines [3]. Due to the widespread use of YDPs in the winemaking process, this study aimed to understand the possible relation between the content of RF in wine and the YDP adopted as nutrient for AF.

Metabolomic study of mixed Saccharomyces cerevisiae yeast during fermentation

Alcoholic fermentation conducted by microorganism is a key step in the production of wine. In this process, interactions between different species of yeast are widely described but their mechanisms are still poorly understood. The interactions studied in wine are mainly between Saccharomyces and non-Saccharomyces species. Therefore, little is known about the mechanisms of interactions

Fleurtai, Soreli and Tocai Friulano: perspectives for quality integration of wine together with protection of the DOCG Lison Classico appellation

In modern viticulture, sustainability must be considered not only into the winery, but in the vineyard as well, being that with the most attentive interventions in order to protect the environment. In this context, the new “fungi resistant” varieties represent a valid option for reducing the negative environmental impact of agrochemicals used in viticulture, including those ones used in organic farming (given the copper accumulation into soils). Several application studies have demonstrated the enological validity of many resistant varieties, both in price and as a blend. Also, under the production point of view, the feasibility and economical sustainability of the new resistant varieties was verified. The aim of this work was to deepen the knowledge on the organoleptic characteristics of wines obtained from the Fleurtai and Soreli varieties and to compare them with the wine obtained from Tocai Friulano, the mother variety in the area destined for the production of the Lison Classico DOCG appellation. The purpose of the work is then to verify the possibility of introducing resistant varieties into the DOCG while maintaining the wine name of the appellation linked to the territory.

South Africa’s top 10 Sauvignon blanc wines. How do the chemical and sensory profiles compare?

FNB Top 10 Sauvignon Blanc competition, presented by the Sauvignon Blanc Interest Group of South Africa and sponsored by First National Bank, is the country’s foremost platform for producers of this cultivar to showcase and benchmark their wines. Wines entered in the competition originated from all over the winegrowing regions of the country and the winning wines showed good representation of quality South African Sauvignon blanc wines. The ten selected wines were subjected to various chemical analyses including volatile thiol and methoxypyrazine determination, while the sensory profile of each wine was determined using projective mapping.

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).