WAC 2022 banner
IVES 9 IVES Conference Series 9 WAC 9 WAC 2022 9 3 - WAC - Oral 9 What happens with the glutathione during winemaking and the storage of the wine?

What happens with the glutathione during winemaking and the storage of the wine?

Abstract

We tried to give a part of the answer to this question by monitoring glutathione during winemaking and storage. The novelty of our approach is to quantify simultaneously the three known forms of glutathione: free glutathione (GSH), oxidized form (GSSG) and glutathione-S-sulfonate (GSSO3H). This last molecule was reported first in wine by Arapatsis et al. (2016), who described the reaction between SO2 and GSSG resulting GSH and GSSO3H. Theoretically, GSH can further react with SO2, but this reaction is slow. This results obtained in model wine was now proved in grape juice, by measuring the kinetic of the reaction after the addition of SO2. For this purpose a LC-MS/MS analysis method was developed, which allows for the first time the quantification of GSSO3H beside of GSH and GSSG in the wine. 

The analyses of samples taken in the different moment of winemaking shows that in the must only GSH and GSSG are present. GSSO3H appears after the addition of SO2 at the end of the alcoholic fermentation. It appears also to be the dominant form of glutathione in SO2 containing wines after 3 months storage. The analysis of a hundred of wines showed a correlation between the relative concentration of GSSO3H and the total SO2 level of the wine. Temperature also effects the reaction rate. Grape variety does not seem to influence the formation of GSSO3H. 

We could conclude that SO2 contribute to release active GSH from the GSSG and so extend the protection potential against oxidation during the first months of storage. It remains the questions: Does GSSO3H have any antioxidant activity? Further investigation would be needed to address this question. However, in the meantime, its quantification is important in the wine to avoid underestimating the glutathione content.

DOI:

Publication date: June 14, 2022

Issue: WAC 2022

Type: Article

Authors

Ágnes Dienes-Nagy, Frédéric Vuichard, Sandrine Belcher, Marie Blackford, Johannes Rösti, Fabrice Lorenzini

Presenting author

Ágnes Dienes-Nagy – Agroscope, 1260 Nyon, Switzerland

Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland| Agroscope, 1260 Nyon, Switzerland | Agroscope, 1260 Nyon, Switzerland 

Contact the author

Keywords

glutathione, wine, glutathione-S-sulfonate, LC-MS/MS

Tags

IVES Conference Series | WAC 2022

Citation

Related articles…

Sensory and chemical phenotyping of wines from a F1 grapevine population

The European Green Deal, a concept of the European Commission, aims at the reduction of pesticides in EU agriculture for 2030 by 50%. Viticulture uses the largest amounts of fungicides in the EU

AGEING REVEALS THE TERROIR OF AGED RED BORDEAUX WINES REGARDLESS OF THE VINTAGES! TARGETED APPROACH USING ODOROUS COMPOUNDS LEVELS INCLUDING TERPENES AND C13 NORISOPRENOIDS

The chemistry of wine is notably complex and is modified by ageing of the bottles. The composition of wines is the result of vine production (under the influence of vintage, climate and soils); yeast production (under the influence of juice composition and fermentation management); lactic bacteria production (under the influence of young wine composition and malolactic fermentation management); and of the ageing process either in vats, barrels or bottles or both. The composition is linked to the quality perceived by consumers but also to their origin, sometimes associated to the “terroir” concept.

Survey of pesticide residues in vineyard soils from the Denomination of Origin Ribeiro

Vineyards from mild temperature, high humidity locations receive often treatments with fungicides to prevent damages produced by fungi responsible for mildium, oidium and botrytis infections. In addition, insecticides are also applied to vineyards to fight again pests, which affect directly, or indirectly (as vectors of different diseases), their productivity. A fraction of the above compounds reaches the soil of vineyards, either during application, or when released from the canopy of vines due to rain-wash-off. Thereafter, depending on soil conditions (pH, organic matter) and environmental variables (regimen of rain, slope of vineyards), they might persist in this compartment, be degraded and/or transferred to water masses, modifying the biodiversity of soils and/or affecting the quality of water reservoirs.

Effect of irrigation and soil type on root growth and distribution of Vitis vinifera L. cv. Nero d’Avola grown in Sicily

L’essai a été effectué dans un vignoble du cépage Nero d’Avola greffé sur 1103 Paulsen dans un terroir de la D.O.C Alcamo en Sicile. Le système de conduite des vignes était à espalier, la taille à cordon coursonné et l’irrigation à goutte a goutte. On a été confrontés trois types de traitements: A) vignes non irriguées; B) vignes irriguées quand le

Making sense of available information for climate change adaptation and building resilience into wine production systems across the world

Effects of climate change on viticulture systems and winemaking processes are being felt across the world. The IPCC 6thAssessment Report concluded widespread and rapid changes have occurred, the scale of recent changes being unprecedented over many centuries to many thousands of years. These changes will continue under all emission scenarios considered, including increases in frequency and intensity of hot extremes, heatwaves, heavy precipitation and droughts. Wine companies need tools and models allowing to peer into the future and identify the moment for intervention and measures for mitigation and/or avoidance. Previously, we presented conceptual guidelines for a 5-stage framework for defining adaptation strategies for wine businesses. That framework allows for direct comparison of different solutions to mitigate perceived climate change risks. Recent global climatic evolution and multiple reports of severe events since then (smoke taint, heatwave and droughts, frost, hail and floods, rising sea levels) imply urgency in providing effective tools to tackle the multiple perceived risks. A coordinated drive towards a higher level of resilience is therefore required. Recent publications such as the Australian Wine Future Climate Atlas and results from projects such as H2020 MED-GOLD inform on expected climate change impacts to the wine sector, foreseeing the climate to expect at regional and vineyard scale in coming decades. We present examples of practical application of the Climate Change Adaptation Framework (CCAF) to impacts affecting wine production in two wine regions: Barossa (Australia) and Douro (Portugal). We demonstrate feasibility of the framework for climate adaptation from available data and tools to estimate historical climate-induced profitability loss, to project it in the future and to identify critical moments when disruptions may occur if timely measures are not implemented. Finally, we discuss adaptation measures and respective timeframes for successful mitigation of disruptive risk while enhancing resilience of wine systems.