Terroir 1996 banner
IVES 9 IVES Conference Series 9 Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Abstract

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise. Plusieurs indices bioclimatiques ont été proposés par la littérature mondiale (WINKLER 1970; HIDALGO, 1980; HUGLIN, 1986, TONIETO et CARBONEAU, 2000), mais pour des raisons physiologiques ces indices n’incluent pas dans leurs formules les températures journalières inférieures à 10 °C, à l’exception de l’indice de FREGONI (FREGONI et PEZZUTTO, 2000). Cet auteur établit une relation entre les variations thermiques, les températures inférieures à 10 °C et la qualité des vins, en particulier pour les 30 jours précédant les vendanges. Parmi les indices appliqués au Chili, celui de WINKLER et AMERINE (WINKLER, 1970) est probablement le plus utilisé, cependant il présente quelques liplites (Mc INTYRE et al. 1987; JACKSON et CHERRY, 1988) et des résultats incongrus ont été signalés pour le Chili. En effet, il classe dans le même groupe des zones littorales avec d’autres proches à la cordillère des Andes, présentant des températures moyennes similaires mais avec des variations thermiques sensiblement différentes (SANTIBANEZ et al. (1984).
FREGONI et PEZZUTTO (2000) affirment que le Chili présente les plus hautes variations thermiques journalières pendant le mois précédant la récolte, ce qui justifierait l’utilisation de l’indice de FREGONI pour la vitiviniculture de ce pays.
On a utilisé la formule simplifiée de l’indice de FREGONI (IFss), en multipliant l’amplitude thermique par le nombre de jours au-dessous de 10 °C pour le mois précédant la récolte, sans, prendre en compte le nombre d’heures pendant lesquelles ces températures au-dessous de 10 °C se maintiennent : IFss = Σ (T maxima – T minima)*Σ (N° jours < 10° C). L’indice de FREGONI est calculé pour le mois précédant la récolte, en l’occurrence, le mois de mars pour l’hémisphère sud.
Le calcul de l’indice de FREGONI pour différents lieux de la région du Maule au Chili permet de différencier 4 zones agroclimatiques. Ces valeurs obtenues ne correspondent pas .aux niveaux les plus élevés possibles pour ces zones, qui se produisent généralement pendant le mois d’avril.
Par ailleurs, au Chili et plus particulièrement dans les zones de la région du Maule, les vendanges s’étalent, en fonction du cépage, du mois de février à mai. Par conséquent, le calcul de l’indice uniquement pour le mois de mars se révèle inapproprié.
Afin de mieux caractériser chaque lieu, on propose donc l’utilisation de la courbe d’évolution de IFss, caractérisée par 4 périodes. Cette courbe d’évolution de l’indice peut avoir différentes applications pratiques.

Bioclimatic indices are good tools to orientate the development of viticultural areas. Several bioclimatic indices have been proposed in international literature (WINKLER 1970; HIDALGO, 1980; HUGLIN, 1986, TONIETO et CARBONEAU, 2000) but, for physiological reasons, daily temperatures under 10°C are not included, excepted in FREGONl’s index (FREGONI and PEZZUTTO, 2000). These authors establishes a relationship between daily temperature variations, temperatures under 10°C and wine quality, for the 30 days before harvest.
WINKLER and AMERINE’s index (WINKLER, 1970) is certainly the most frequently used, among different climatic indices used in Chile. However, it has some limitations (Mc INTYRE et al. 1987; JACKSON and CHERRY, 1988) and some wrong results have been reported for Chile. In fact, this index classifies in the same class coastal zones and closed to the Andes mountains areas. For these two areas, average temperatures are similar but daily variations oftemperature are quite different (SANTIBANEZ et al. 1984).
FREGONI and PEZZUTTO (2000) observed that Chile presents the highest daily variations of temperature during the month before harvest and suggested that it could justify the use of FREGONI’ s index for Chilean viticultural areas.
Simplified FREGONI’ s indice (lfss) was used by multiplying daily temperature amplitude and the number of days under 10°C, for the month before harvest, but not regarding duration of temperature under 10°C period: Ifss = S (T maxima – T minima)*S (N° days < 10° C). FREGONI’ s index is calculated for the month before harvest, March for the southern hemisphere.
FREGONI’ s index was applied to different areas of Chilean Maule region and 4 agroclimatic zones were distinguished. Results don’t correspond to the highest potential levels for these areas, generally found in April. In Chile, and more particularly in the Maule region, the harvest period spread from February to May, according to the cultivar. Consequently, FREGONl’s index application only for March is quite inexact. The lfss curve evolution, characterized by 4 periods, is proposed to characterize viticultural areas. This curve presents different practical applications.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

Ph. PSZCZOLKOWSKJ (1), E. ALEMP ARTE (1) and M. I. CARDENAS (2)

(1) Departamento de Fruticultura y Enología
Facultad de Agronomia e Ingenieria Forestal
Pontificia Universidad Catolica de Chile
Casilla 306-22, Santiago, Chile
(2) CIREN-CORFO
Manuel Montt 1164; Santiago, Chile

Contact the author

Keywords

Chili, zonage vitivinicole, indice bioclimatique
Chile, viti-vinicultural zoning, bio-climatic index

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

IMPACT OF RHIZOPUS AND BOTRYTIS ON WINE FOAMING PROPERTIES

A lot of work has been done on the impact of Botrytis on the foam of sparkling wines. This work often concerns wines produced in cool regions, where Botrytis is the dominant fungal pathogen. However, in southern countries such as Spain, in particularly hot years such as 2022, the majority fungal pathogen is sometimes Rhizopus. Like Botrytis, Rhizopus is a fungus that produces an aspartic protease.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

Impact of glutathione and elemental sulphur juice addition on the volatile thiol production in South African Sauvignon blanc wine

Three compounds, 3-mercaptohexanol (3MH), 3-mercaptohexyl-acetate (3MHA) and 4-mercapto-4-methylpentan-2-one (4MMP), also known as varietal thiols, have been identified to contribute positively to wine aroma and are responsible for the distinct gooseberry, grapefruit, guava and box tree character found in Sauvignon blanc wines. Certain volatile thiol compounds though, can cause off-aromas of onion, garlic, rubber and rotten egg, this group of molecules is known as reductive sulphur compounds (RSC). This study looks into how the addition of sulphur-compounds to Sauvignon blanc juice contributes to the varietal thiol (3MH and 3MHA) concentration and reductive sulphur compound concentration in South African Sauvignon blanc wine.

Trends and challenges in International Wine Trade. The need for new strategies for companies and regions.

Trends already extended for more than 12 years show a decline in both consumption and international trade, particularly in volume. However, there are also positive signs in several categories of wine, segments and markets, as well as a better trend in terms of value. How are these trends affecting wine producers and distributors? Are they short or long term? do they mean radical and permanent changes to which a way of adaptation has to be found or are they just temporary changes that may only require some calm? How are companies adapting to these new trends? Which are their effects on wine regions?

The landscape in the development of vineyard regions: an application to the ACO Dão and ACO Bairrada (Central Portugal)

The aim of this paper is to analyse the impact of landscapes in the notoriety and marketing of wines and in tourism promotion, specifically in the case of two centenary Portuguese demarcated regions