Terroir 1996 banner
IVES 9 IVES Conference Series 9 Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Abstract

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise. Plusieurs indices bioclimatiques ont été proposés par la littérature mondiale (WINKLER 1970; HIDALGO, 1980; HUGLIN, 1986, TONIETO et CARBONEAU, 2000), mais pour des raisons physiologiques ces indices n’incluent pas dans leurs formules les températures journalières inférieures à 10 °C, à l’exception de l’indice de FREGONI (FREGONI et PEZZUTTO, 2000). Cet auteur établit une relation entre les variations thermiques, les températures inférieures à 10 °C et la qualité des vins, en particulier pour les 30 jours précédant les vendanges. Parmi les indices appliqués au Chili, celui de WINKLER et AMERINE (WINKLER, 1970) est probablement le plus utilisé, cependant il présente quelques liplites (Mc INTYRE et al. 1987; JACKSON et CHERRY, 1988) et des résultats incongrus ont été signalés pour le Chili. En effet, il classe dans le même groupe des zones littorales avec d’autres proches à la cordillère des Andes, présentant des températures moyennes similaires mais avec des variations thermiques sensiblement différentes (SANTIBANEZ et al. (1984).
FREGONI et PEZZUTTO (2000) affirment que le Chili présente les plus hautes variations thermiques journalières pendant le mois précédant la récolte, ce qui justifierait l’utilisation de l’indice de FREGONI pour la vitiviniculture de ce pays.
On a utilisé la formule simplifiée de l’indice de FREGONI (IFss), en multipliant l’amplitude thermique par le nombre de jours au-dessous de 10 °C pour le mois précédant la récolte, sans, prendre en compte le nombre d’heures pendant lesquelles ces températures au-dessous de 10 °C se maintiennent : IFss = Σ (T maxima – T minima)*Σ (N° jours < 10° C). L’indice de FREGONI est calculé pour le mois précédant la récolte, en l’occurrence, le mois de mars pour l’hémisphère sud.
Le calcul de l’indice de FREGONI pour différents lieux de la région du Maule au Chili permet de différencier 4 zones agroclimatiques. Ces valeurs obtenues ne correspondent pas .aux niveaux les plus élevés possibles pour ces zones, qui se produisent généralement pendant le mois d’avril.
Par ailleurs, au Chili et plus particulièrement dans les zones de la région du Maule, les vendanges s’étalent, en fonction du cépage, du mois de février à mai. Par conséquent, le calcul de l’indice uniquement pour le mois de mars se révèle inapproprié.
Afin de mieux caractériser chaque lieu, on propose donc l’utilisation de la courbe d’évolution de IFss, caractérisée par 4 périodes. Cette courbe d’évolution de l’indice peut avoir différentes applications pratiques.

Bioclimatic indices are good tools to orientate the development of viticultural areas. Several bioclimatic indices have been proposed in international literature (WINKLER 1970; HIDALGO, 1980; HUGLIN, 1986, TONIETO et CARBONEAU, 2000) but, for physiological reasons, daily temperatures under 10°C are not included, excepted in FREGONl’s index (FREGONI and PEZZUTTO, 2000). These authors establishes a relationship between daily temperature variations, temperatures under 10°C and wine quality, for the 30 days before harvest.
WINKLER and AMERINE’s index (WINKLER, 1970) is certainly the most frequently used, among different climatic indices used in Chile. However, it has some limitations (Mc INTYRE et al. 1987; JACKSON and CHERRY, 1988) and some wrong results have been reported for Chile. In fact, this index classifies in the same class coastal zones and closed to the Andes mountains areas. For these two areas, average temperatures are similar but daily variations oftemperature are quite different (SANTIBANEZ et al. 1984).
FREGONI and PEZZUTTO (2000) observed that Chile presents the highest daily variations of temperature during the month before harvest and suggested that it could justify the use of FREGONI’ s index for Chilean viticultural areas.
Simplified FREGONI’ s indice (lfss) was used by multiplying daily temperature amplitude and the number of days under 10°C, for the month before harvest, but not regarding duration of temperature under 10°C period: Ifss = S (T maxima – T minima)*S (N° days < 10° C). FREGONI’ s index is calculated for the month before harvest, March for the southern hemisphere.
FREGONI’ s index was applied to different areas of Chilean Maule region and 4 agroclimatic zones were distinguished. Results don’t correspond to the highest potential levels for these areas, generally found in April. In Chile, and more particularly in the Maule region, the harvest period spread from February to May, according to the cultivar. Consequently, FREGONl’s index application only for March is quite inexact. The lfss curve evolution, characterized by 4 periods, is proposed to characterize viticultural areas. This curve presents different practical applications.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

Ph. PSZCZOLKOWSKJ (1), E. ALEMP ARTE (1) and M. I. CARDENAS (2)

(1) Departamento de Fruticultura y Enología
Facultad de Agronomia e Ingenieria Forestal
Pontificia Universidad Catolica de Chile
Casilla 306-22, Santiago, Chile
(2) CIREN-CORFO
Manuel Montt 1164; Santiago, Chile

Contact the author

Keywords

Chili, zonage vitivinicole, indice bioclimatique
Chile, viti-vinicultural zoning, bio-climatic index

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

A new chemiluminescence method related to molecules derived from Botrytis cinerea for characterization of Aszu wines from Tokaj, from Hungary

For the chemical characterization of Aszu wines from Tokaj region our aim is to develop a biochemical method which is related to Botrytis cinerea.

Effects of ethanol removal techniques on Nero d’Avola wine

Over the past two decades, climate change has contributed to an increase in sugar content in grape must, and consequently, in the ethanol levels of wines.

Late frost protection in Champagne

Probably one of the most counterintuitive impacts of climate change on vine is the increased frequency of late frost. Champagne, due to its septentrional position is historically and regularly affected by this meteorological hazard. Champagne has therefore developed a strong experience in frost protection with first experiments dating from the end of 19th century. Frost protection can be divided in two parts: passive and active. Passive protection includes all the methods that do not seek to modify the vine’s environment or resistance at the time of frost. The most iconic passive protection in Champagne is the establishment of the individual reserve. This reserve allows to stock a certain quantity of clear wine during a surplus year to compensate a meteorological hazard like frost during the following years. Other common passive methods are the control of planting area (walls, bushes, topography), the choice of grape variety, late pruning, or the impact of grass cover and tillage. Active frost protection is also divided in two parts. Most of the existing techniques tend to modify vine’s environment. Most of the time they provide warmth (candles, heaters, windmills, heating cables…), or stabilise bud’s temperature above a lethal threshold (water sprinkling). The other way to actively fight is to enhance the resistance of buds to frost (elicitors). The Comité Champagne evaluates frost protection methods following three main axes: the efficiency, the profitability, and the environmental impact through a lifecycle assessment. This study will present the results on both passive and active protection following these three axes.

Vineyard nutrient budget and sampling protocols

Vineyard nutrient management is crucial for reaching production-specific quality standards, yet timely evaluation of nutrient status remains challenging. The existing sampling protocol of collecting vine tissue (leaves and/or petioles) at bloom or veraison is time-consuming. Additionally, this sampling practice is too late for in-season fertilizer applications (e.g. N is applied well before bloom). Therefore alternative early-season protocols are necessary to predict the vine nutrient demand for the upcoming season. The main goals of this project are to 1) optimize existing tissue sampling protocols; 2) determine the amount of nutrients removed at the end of the growing season.

Survey of phenological stages of disease-resistant varieties in Friuli Venezia Giulia region

Context and purpose of the study. The primary fungal diseases affecting grapevines in Europe are downy mildew and powdery mildew.