Terroir 1996 banner
IVES 9 IVES Conference Series 9 Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Application of the simplified quality bioclimatical index of Fregoni: suggestion of using its evolution curve

Abstract

Les indices bioclimatiques constituent un bon outil pour piloter le développement vitivinicole dans une région précise. Plusieurs indices bioclimatiques ont été proposés par la littérature mondiale (WINKLER 1970; HIDALGO, 1980; HUGLIN, 1986, TONIETO et CARBONEAU, 2000), mais pour des raisons physiologiques ces indices n’incluent pas dans leurs formules les températures journalières inférieures à 10 °C, à l’exception de l’indice de FREGONI (FREGONI et PEZZUTTO, 2000). Cet auteur établit une relation entre les variations thermiques, les températures inférieures à 10 °C et la qualité des vins, en particulier pour les 30 jours précédant les vendanges. Parmi les indices appliqués au Chili, celui de WINKLER et AMERINE (WINKLER, 1970) est probablement le plus utilisé, cependant il présente quelques liplites (Mc INTYRE et al. 1987; JACKSON et CHERRY, 1988) et des résultats incongrus ont été signalés pour le Chili. En effet, il classe dans le même groupe des zones littorales avec d’autres proches à la cordillère des Andes, présentant des températures moyennes similaires mais avec des variations thermiques sensiblement différentes (SANTIBANEZ et al. (1984).
FREGONI et PEZZUTTO (2000) affirment que le Chili présente les plus hautes variations thermiques journalières pendant le mois précédant la récolte, ce qui justifierait l’utilisation de l’indice de FREGONI pour la vitiviniculture de ce pays.
On a utilisé la formule simplifiée de l’indice de FREGONI (IFss), en multipliant l’amplitude thermique par le nombre de jours au-dessous de 10 °C pour le mois précédant la récolte, sans, prendre en compte le nombre d’heures pendant lesquelles ces températures au-dessous de 10 °C se maintiennent : IFss = Σ (T maxima – T minima)*Σ (N° jours < 10° C). L’indice de FREGONI est calculé pour le mois précédant la récolte, en l’occurrence, le mois de mars pour l’hémisphère sud.
Le calcul de l’indice de FREGONI pour différents lieux de la région du Maule au Chili permet de différencier 4 zones agroclimatiques. Ces valeurs obtenues ne correspondent pas .aux niveaux les plus élevés possibles pour ces zones, qui se produisent généralement pendant le mois d’avril.
Par ailleurs, au Chili et plus particulièrement dans les zones de la région du Maule, les vendanges s’étalent, en fonction du cépage, du mois de février à mai. Par conséquent, le calcul de l’indice uniquement pour le mois de mars se révèle inapproprié.
Afin de mieux caractériser chaque lieu, on propose donc l’utilisation de la courbe d’évolution de IFss, caractérisée par 4 périodes. Cette courbe d’évolution de l’indice peut avoir différentes applications pratiques.

Bioclimatic indices are good tools to orientate the development of viticultural areas. Several bioclimatic indices have been proposed in international literature (WINKLER 1970; HIDALGO, 1980; HUGLIN, 1986, TONIETO et CARBONEAU, 2000) but, for physiological reasons, daily temperatures under 10°C are not included, excepted in FREGONl’s index (FREGONI and PEZZUTTO, 2000). These authors establishes a relationship between daily temperature variations, temperatures under 10°C and wine quality, for the 30 days before harvest.
WINKLER and AMERINE’s index (WINKLER, 1970) is certainly the most frequently used, among different climatic indices used in Chile. However, it has some limitations (Mc INTYRE et al. 1987; JACKSON and CHERRY, 1988) and some wrong results have been reported for Chile. In fact, this index classifies in the same class coastal zones and closed to the Andes mountains areas. For these two areas, average temperatures are similar but daily variations oftemperature are quite different (SANTIBANEZ et al. 1984).
FREGONI and PEZZUTTO (2000) observed that Chile presents the highest daily variations of temperature during the month before harvest and suggested that it could justify the use of FREGONI’ s index for Chilean viticultural areas.
Simplified FREGONI’ s indice (lfss) was used by multiplying daily temperature amplitude and the number of days under 10°C, for the month before harvest, but not regarding duration of temperature under 10°C period: Ifss = S (T maxima – T minima)*S (N° days < 10° C). FREGONI’ s index is calculated for the month before harvest, March for the southern hemisphere.
FREGONI’ s index was applied to different areas of Chilean Maule region and 4 agroclimatic zones were distinguished. Results don’t correspond to the highest potential levels for these areas, generally found in April. In Chile, and more particularly in the Maule region, the harvest period spread from February to May, according to the cultivar. Consequently, FREGONl’s index application only for March is quite inexact. The lfss curve evolution, characterized by 4 periods, is proposed to characterize viticultural areas. This curve presents different practical applications.

 

 

 

DOI:

Publication date: February 15, 2022

Issue:Terroir 2002

Type: Article

Authors

Ph. PSZCZOLKOWSKJ (1), E. ALEMP ARTE (1) and M. I. CARDENAS (2)

(1) Departamento de Fruticultura y Enología
Facultad de Agronomia e Ingenieria Forestal
Pontificia Universidad Catolica de Chile
Casilla 306-22, Santiago, Chile
(2) CIREN-CORFO
Manuel Montt 1164; Santiago, Chile

Contact the author

Keywords

Chili, zonage vitivinicole, indice bioclimatique
Chile, viti-vinicultural zoning, bio-climatic index

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Interest and impact of PVP/PVI (Polyvinylpyrrolidone/ Polyvinylimidazole) on winemaking and final quality of wines

Céline Sparrow a, Christophe Morge a, a SOFRALAB SAS, 79, av. A.A. Thévenet – CS 11031 – 51530 Magenta, France Consumers’ health and security force authorities to limit, in wine as in others food industry products, the concentration in « dangerous » molecules. Therefore the legal limit in heavy metals keeps on decreasing. As per proof EU regulation just decrease the stain concentration in wine from 0,2 to 0,15 mg/l. Certain changes , such as sodium arsenite treatment in vines, disappearance of brass in wineries to the benefit of stainless steel, limit even more the concentration of heavy metals in wines. But the use of copper derivates in vines treatments is difficult to replace. In the case of wine and its elaboration, the problem is even more complex. Indeed, regulation forces the wine producers to control the concentration of certain heavy metals in final wines.

Using the fraction of transpirable soil water to estimate grapevine leaf water potential: comparing the classical statistical regression approach to machine learning algorithms

Weather uncertainty is forcing Mediterranean winegrowers to adopt new irrigation strategies to cope with water scarcity while ensuring a sustainable yield and improved berry and wine quality standards. Therefore, more accurate and high-resolution monitoring of soil water content and vine water status is a major concern. Leaf water potential measured at pre-dawn (PD) is considered to be in equilibrium with soil water potential and is highly correlated with soil water content at the soil depth where roots extract water.

La producción vitivinícola como fuente de impactos positivos en el medio seminatural

Wine is at risk of being labelled as a dangerous health product, based on studies that focus on its alcohol content. However, multiple studies suggest that moderate consumption is healthy. Changing the focus from health impacts to the environmental and socioeconomic impacts that wine companies cause, what can be said?

An automated cooling system to mitigate thermal and radiative stresses in Pignoletto white grapes

In the context of increasingly hot and dry summers, the adoption of innovative irrigation technologies has become essential for maintaining grape production while minimizing water use.

Physical-chemical characterization of Moscatel de Setúbal fortified wines from different vintages

Moscatel de Setúbal is a Portuguese fortified wine with Protected Designation of Origin (PDO Setúbal), made from Moscatel de Setúbal grape variety (Muscat of Alexandria) [1].