Terroir 1996 banner
IVES 9 IVES Conference Series 9 Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Modelisation of the microclimatical parameters for the viticultural ”terroirs”characterization of “Canton de Vaud” (Switzerland)

Abstract

Dans le cadre d’une recherche sur les terroirs viticoles du canton de Vaud – Suisse, un modèle du microclimat intégrant température, relief, éclairement et pluviométrie a été conçu. L’objectif est d’établir un zonage du microclimat pour mieux comprendre les corrélations existantes entre le comportement agronomique de la vigne, les caractéristiques des sols et les variables microclimatiques. L’approche adoptée utilise notamment un modèle numérique d’altitude de 25m de résolution, le MNA 25 de l’Office fédéral de topographie.
Le gradient thermique est déduit de l’éclairement, de l’estimation de l’effet du vent et d’un modèle empirique de la répartition thermique altitudinale. L’ensoleillement est calculé à l’aide d’un modèle de rayonnement intégrant l’effet du relief environnant et la hauteur du soleil sur l’horizon durant la période considérée. Quant à l’effet du vent, il est estimé par la configuration du relief et les directions principales fournies par une cartographie régionale.
La comparaison finale avec la carte de niveaux thermiques du canton de Vaud, établie sur la base de relevés phénologiques de cultures représentatives [SCHREIBER, 1968], permet d’ajuster le modèle du microclimat. La répartition pluviométrique provient d’une régionalisation des informations collectées dans les stations de mesure du réseau Météosuisse.
Le zonage microclimatique définitif est une combinaison pondérée des variables citées. Sa valeur est davantage d’ordre qualitatif que quantitatif. ‘Il offre, cependant, une base comparative entre les différentes régions concernées. Finalement, la caractérisation des terroirs réunit le zonage microclimatique, les unités pédologiques et les résultats de l’étude agronolllique.

As part of a research on the viticultural terroirs of “Canton de Vaud” – Switzerland, a microclimatic model integrating temperature, relief, illumination and pluviometry was built. The objective is to make microclimate zoning in order to better understand the correlations between the agronomical behaviour of the vineyard, the soils characterization and the microclimatic variables. The adopted approach uses a digital elevation model with a resolution of 25 meters, the DEM25 of the Federal Office of Topography.

The thermical gradient is deduced from illumination, wind effect estimations and an empirical model of thermical altitudinal distribution. The illumination is calculated with a radiation model that integrates the effects of the surrounding relief (slope, aspect and casted shadow) and the sun height above the horizon during a specific period. The relief shape and the principal wind directions based on a regional cartography allowed to estimate the wind effect.
The achieved results are adapted to measurement stations data. Finally, a comparison with the map of thermical levels of “canton de Vaud”, determined on the basis of a phenological survey of representative cultures [SCHREIBER, 1968], allows to adjust the microclimate model. The rainfall distribution is the result of a data regionalization coming from the Meteosuisse station networks.
The final microclimatic zoning is a weighting of the above mentioned variables. lts value is more qualitative than quantitative. It offers however a comparison basis between the different regions concerned by the study. Finally, terroirs characterization combines microclimatic zoning, pedological unities and agronomical study results.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

K. PYTHOUD and R. CALOZ

Faculté de l’Environnement naturel, architectural et construit
Laboratoire de Systèmes d’information géographique (LASIG)
Ecole polytechnique fédérale de Lausanne
CH – 1015 Lausanne

Contact the author

Keywords

Modélisation, microclimat, terroirs, gradient thermique, pluviométrie
Modelisation, microclimate, terroirs, thermical gradient, pluviometry

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Impacts of environmental variability and viticultural practices on grapevine behaviour at terroir scales

Climate change poses several challenges for the wine-industry in the 21st century. Adaptation of viticultural and winemaking practices are therefore essential to preserve wine quality and typicity. Given the complex interactions between physical, biological and human factors at terroir scales, studies conducted at these fine scales allow to better define the local environment and its influences on grapevine growth and berry ripening.

Mousy off-flavor detection: a rapid LCMS/MS method

These days, consumers are interested in food products linked to the environment and the concept of naturalness. They prefer “free” products, such as those with no pesticide residues or no added sulfur dioxide (so2) in wines. In fact, so2 is the most widely used preservative in winemaking, as it has multiple properties at low cost: it is antioxidant, antioxidasic and antimicrobial.

Relationships between berry quality and climatic variability in grapevine cultivars from Piedmont

A major topic in viticultural research is the analysis of the relationships between climate on one side, and grape and wine quality on the other. It is well known that climatic conditions

The use of microwaves during the maceration of Cabernet Sauvignon wines for improving their chromatic characteristics

The use of new technologies such as microwaves (MW) arose in recent years as an efficient alternative to reduce the use of sulfur dioxide (SO2) and as a method for improving wines in terms of color and aroma [1, 2]. MW (non-ionizing electromagnetic waves with frequencies between 300 MHz and 300 GHz) have been widely applied in the food industry in order to reduce processing time and favor food preservation.

Estimating bulk stomatal conductance of grapevine canopies

In response to changes in their environment, grapevines regulate transpiration using various physiological mechanisms that alter conductance of water through the soil-plant-atmosphere continuum. Expressed as bulk stomatal conductance at the canopy scale, it varies diurnally in response to changes in vapor pressure deficit and net radiation, and over the season to changes in soil water deficits and hydraulic conductivity of both soil and plant. It is necessary to characterize the response of conductance to these variables to better model how vine transpiration also responds to these variables. Furthermore, to be relevant for vineyard-scale modeling, conductance is best characterized using data collected in a vineyard setting. Applying a crop canopy energy flux model developed by Shuttleworth and Wallace, bulk stomatal conductance was estimated using measurements of individual vine sap flow, temperature and humidity within the vine canopy, and estimates of net radiation absorbed by the vine canopy. These measurements were taken on several vines in a non-irrigated vineyard in Bordeaux France, using equipment that did not interfere with ongoing vineyard operations. An inverted Penman-Monteith equation was then used to calculate bulk stomatal conductance on 15-minute intervals from July to mid-September 2020. Time-series plots show significant diurnal variation and seasonal decreases in conductance, with overall values similar to those in the literature. Global sensitivity analysis using non-parametric regression found transpiration flux and vapor pressure deficit to be the most important input variables to the calculation of bulk stomatal conductance, with absorbed net radiation and bulk boundary layer conductance being much less important. Conversely, bulk stomatal conductance was one of the most important inputs when calculating vine transpiration, further emphasizing the need for characterizing its response to environmental changes for use in vineyard water use modeling.