Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Abstract

Un travail sur les A.O.C. du piémont pyrénéen occidental permet de construire une hiérarchie de paramètres climatiques, géo-pédologiques, morphologiques, de saisir leurs niveaux d’interaction et d’élaborer une méthodologie pour proposer un zonage. Le départ est l’analyse de formes, fondamentale pour hiérarchiser les unités et définir les expositions. Le paramètre climatique, toujours nnjeur, est analysé, à 3 échelles. Puis les sols sont étudiés dans une logique de toposéquence, leurs aptitudes sont jugées en fonction de l’interaction avec le microclimat de chaque parcelle. Viennent alors des analyses texturales et géochimiques qui ne sont que des supports pour les choix de pratiques viticoles. Dans un piémont, c’est le système des pentes qui guide le zonage, mais ces terroirs portent également l’empreinte d’une forte tradition humaine, qui doit s’ouvrir à la modernité tout en valorisant ses originalités.

A work on the A.O.C. of Pyrenean foothill wakes it possible to build a hierarchy of parameters to seize their levels of interactions and to work out a methodological protocol to propose a zoning. The departure is the forms analysis, fundamental for hierarchizing the units and to define the exposures. The always major climatic parameter, is analysed, on 3 scales (global, regional, local). Then the soils are studied in a logic of toposequence. The aptitudes of the soil are judged according to their interaction with the microclimate of each parcel. Come then from the texture and geochimical analysis, which are only supports for the viticultural practices choices. A cartographic expression is then given. In a foothill, it is the system of the slopes, which guides zoning, but these traditional soils also carry the print of a story human tradition, which must open with modernity while preserving and valorizating its originalities.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean DELFAUD and Roger SABRIER

Géodynamique des Bassins – Université de Pau – CURS-IPRA – BP 1155 – 64013 PAU

Keywords

Piémont gascon, Terroirs, Formes, Climat, Sols, Zonage, Géochimie, Minéraux argileux, Capacité d’échange
Gascon foothill, Vineyard, Morphology, Climate, Soils, Zoning, Geochimistry, Clay minerais, Exchange capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The influence of tertiary and quaternary deposits on the viticultural potential of the terroirs to be found in Geneva, Switzerland

The 1365 ha of the Genevese vineyard are located at the south-western corner of the Swiss plateau, between 395m and 505 m altitude.

The potential of multispectral/hyperspectral technologies for early detection of “flavescence dorée” in a Portuguese vineyard

“Flavescence dorée” (FD) is a grapevine quarantine disease associated with phytoplasmas and transmitted to healthy plants by insect vectors, mainly Scaphoideus titanus. Infected plants usually develop symptoms of stunted growth, unripe cane wood, leaf rolling, leaf yellowing or reddening, and shrivelled berries. Since plants can remain symptomless up to four years, they may act as reservoirs of FD contributing to the spread of the disease. So far, conventional management strategies rely mainly on the insecticide treatments, uprooting of infected plants and use of phytoplasma-free propagation material. However, these strategies are costly and could have undesirable environmental impacts. Thus, the development of sustainable and noninvasive approaches for early detection of FD and its management are of great importance to reduce disease spread and select the best cultural practices and treatments. The present study aimed to evaluate if multispectral/hyperspectral technologies can be used to detect FD before the appearance of the first symptoms and if infected grapevines display a spectral imaging fingerprint. To that end, physiological parameters (leaf area, chlorophyll content and photosynthetic rate) were collected in concomitance to the measurements of plant reflectance (using both a portable apparatus and a remote sensing drone). Measurements were performed in two leaves of 8 healthy and 8 FD-infected grapevines, at four timepoints: before the development of disease symptoms (21st June); and after symptoms appearance (ii) at veraison (2nd August); at post-veraison (11th September); and at harvest (25th September). At all timepoints, FD infected plants revealed a significant decrease in the studied physiological parameters, with a positive correlation with drone imaging data and portable apparatus analyses. Moreover, spectra of either drone imaging and portable apparatus showed clear differences between healthy and FD-infected grapevines, validating multispectral/ hyperspectral technology as a potential tool for the early detection of FD or other grapevine-associated diseases.

The effects of cane girdling on berry texture properties and the concentration of some aroma compounds in three table grape cultivars

The marketability of the table grapes is highly influenced by the consumer demand; therefore the market value of the table grapes is mainly characterized by its berry size, colour, taste and texture. Girdling could cause accumulation of several components in plants above the ringing of the phloem including clusters and resulting improved maturity. The aim of the experiments was to examine the effect of girdling on berry texture characteristics and aroma concentration.

AROMA ASSESSMENT OF COMMERCIAL SFORZATO DI VALTELLINA WINES BYINSTRUMENTAL AND SENSORY METHODOLOGIES

Sforzato di Valtellina DOCG is a special dry red wine produced from partially dehydrated Nebbiolo wine-grapes growing in the Rhaetian Alps valley of Valtellina (Lombardy, Italy). Valtellina terraced vineyards are located at an altitude of 350–800 m according to ‘heroic’ viticulture on steep slopes. The harvested grape bunches are naturally dehydrated indoors, where a slow and continuous withering occurs (about 20% w/w of weight loss), until at least 1st December when the grapes reach the desired sugar content and can be processed following a normal winemaking with maceration.

From genes to vineyards: system biology and new breeding technologies for water stress tolerance in grapevines

One of the major challenges for food security and sovereignty is to produce stress-tolerant plants without introducing foreign DNA, because the legislative process, that bans transgenics, challenges us to find new solutions for producing plants that can survive the drought. To achieve this goal, we need to identify genes that can be modified to improve stress tolerance in plants. In this work, we present an online tool for exploring the transcriptome of grapevines under water stress, which is one of the most important abiotic stresses affecting viticulture. The tool is based on a comprehensive collection of rna-seq data from 997 experiments, covering four different tissues (leaf, root, berry, and shoot), various levels of water stress, and diverse genetic backgrounds (cultivars and rootstocks) with different levels of tolerance to water stress.