Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Abstract

Un travail sur les A.O.C. du piémont pyrénéen occidental permet de construire une hiérarchie de paramètres climatiques, géo-pédologiques, morphologiques, de saisir leurs niveaux d’interaction et d’élaborer une méthodologie pour proposer un zonage. Le départ est l’analyse de formes, fondamentale pour hiérarchiser les unités et définir les expositions. Le paramètre climatique, toujours nnjeur, est analysé, à 3 échelles. Puis les sols sont étudiés dans une logique de toposéquence, leurs aptitudes sont jugées en fonction de l’interaction avec le microclimat de chaque parcelle. Viennent alors des analyses texturales et géochimiques qui ne sont que des supports pour les choix de pratiques viticoles. Dans un piémont, c’est le système des pentes qui guide le zonage, mais ces terroirs portent également l’empreinte d’une forte tradition humaine, qui doit s’ouvrir à la modernité tout en valorisant ses originalités.

A work on the A.O.C. of Pyrenean foothill wakes it possible to build a hierarchy of parameters to seize their levels of interactions and to work out a methodological protocol to propose a zoning. The departure is the forms analysis, fundamental for hierarchizing the units and to define the exposures. The always major climatic parameter, is analysed, on 3 scales (global, regional, local). Then the soils are studied in a logic of toposequence. The aptitudes of the soil are judged according to their interaction with the microclimate of each parcel. Come then from the texture and geochimical analysis, which are only supports for the viticultural practices choices. A cartographic expression is then given. In a foothill, it is the system of the slopes, which guides zoning, but these traditional soils also carry the print of a story human tradition, which must open with modernity while preserving and valorizating its originalities.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean DELFAUD and Roger SABRIER

Géodynamique des Bassins – Université de Pau – CURS-IPRA – BP 1155 – 64013 PAU

Keywords

Piémont gascon, Terroirs, Formes, Climat, Sols, Zonage, Géochimie, Minéraux argileux, Capacité d’échange
Gascon foothill, Vineyard, Morphology, Climate, Soils, Zoning, Geochimistry, Clay minerais, Exchange capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The valorization of wine lees as a source of mannoproteins for food and wine applications

AIM. Wine yeast lees constitute a winemaking by-product that, unlike grape skins and seeds, are not sufficiently exploited to add value to the winemaking sector, as their treatment and disposal generally represents a cost for wineries [1].

Characterization of simple polyphenols in seeds of autochthonous grapevine varieties grown in Croatia (Vitis vinifera L.)

Croatia has rich grapevine genetic resources with more than 125 autochthonous varieties preserved. Coastal region of Croatia, Dalmatia, is well known for wine production based on autochthonous grapevine varieties. Nevertheless, only couple of these are widely cultivated and have greater economic importance. Grape seeds are sources of polyphenols which play an important role in organoleptic and nutritional value of grape and wine. Hence, the aim of this study was to evaluate the simple polyphenols from grape seeds in 20 rare autochthonous grapevine varieties.

The effects of alternative herbicide free cover cropping systems on soil health, vine performance, berry quality and vineyard biodiversity in a climate change scenario in Switzerland

There is an urgent need in viticulture to adopt alternative herbicide-free soil management strategies to mitigate climate change, increase biodiversity, reduce plant protection products and improve soil quality while minimizing detrimental effects on grapevine’s stress tolerance and fruit quality. To propose sustainable solutions, adapted to different pedoclimatic conditions in Switzerland, we developed a multidisciplinary 4-year project, started in 2020. Objectives of the project are to a) evaluate the impact of green covers (spontaneous flora, winter cover crop and permanent ground cover) on environmental and agronomic parameters and b) develop subsequently innovative strategies for different viticultural contexts of Switzerland. The project is divided into 3 phases: 1) diagnosis, 2) on-farm and 3) on-station experiments. Phase 1) consisted in an assessment of 30 commercial vineyards all over Switzerland, where growers already use different herbicide-free soil management strategies. The most promising practices identified in this exploratory phase will be replicated in commercial vineyards across Switzerland (“on-farm”) as well as in a classical randomized block design in an experimental plot (“on-station”). For phase 1), measurements consisted in evaluation of soil status (compaction, structure, roots development), soil microbial diversity (metagenomics), plant diversity and biomass, vine physiology (water stress, vigor, leaf nitrogen) and berry quality (acidity, sugar, available nitrogen). Interestingly, the permanent ground cover resulted in a higher Shannon index thus a higher biodiversity as compared to the other itineraries. The winter cover crop increased vine nitrogen and vigor while deteriorating soil quality, leaving the soil more exposed and compacted likely due to more frequent tillage. The spontaneous flora led to higher berry sugar accumulation, less nitrogen and higher malic acid concentration putatively due to a higher water retention of the flora in a particularly wet vintage. Phases 2) and 3) are required to confirm those tendencies, over the 3 next vintages and different climatic conditions.

How to reduce SO2 additions in wine with the aid of non-conventional yeasts

Among the factors that influence the sensory quality, style, safety, sustainability, and sense of place of a wine, the contributions of microbial biodiversity are widely becoming more recognized. Throughout winemaking, multiple biochemical reactions are performed by a myriad of different microorganisms interacting in many ways.

Empreinte carbone et environnementale du vin en France : chiffres d’impact et bonnes pratiques à mettre en œuvre

Increasing concentrations of greenhouse gases (GHGs) in the atmosphere due to human activities are leading to a rise in the average temperature of the atmosphere. among the scenarios established by the un’s intergovernmental panel on climate change (IPCC), only two enable us to achieve the minimum objective of the paris agreements signed at cop 21 in 2015: staying below +2°c after 2050. both scenarios forecast a rapid reduction in GHG emissions as early as 2025, thanks to strong international cooperation, the priority given to sustainable development and responsible consumer choices.