Terroir 1996 banner
IVES 9 IVES Conference Series 9 Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Hierarchy of the interactions between physical and biological parameters intervening in the Pyrenean Gascon foothill vineyard

Abstract

Un travail sur les A.O.C. du piémont pyrénéen occidental permet de construire une hiérarchie de paramètres climatiques, géo-pédologiques, morphologiques, de saisir leurs niveaux d’interaction et d’élaborer une méthodologie pour proposer un zonage. Le départ est l’analyse de formes, fondamentale pour hiérarchiser les unités et définir les expositions. Le paramètre climatique, toujours nnjeur, est analysé, à 3 échelles. Puis les sols sont étudiés dans une logique de toposéquence, leurs aptitudes sont jugées en fonction de l’interaction avec le microclimat de chaque parcelle. Viennent alors des analyses texturales et géochimiques qui ne sont que des supports pour les choix de pratiques viticoles. Dans un piémont, c’est le système des pentes qui guide le zonage, mais ces terroirs portent également l’empreinte d’une forte tradition humaine, qui doit s’ouvrir à la modernité tout en valorisant ses originalités.

A work on the A.O.C. of Pyrenean foothill wakes it possible to build a hierarchy of parameters to seize their levels of interactions and to work out a methodological protocol to propose a zoning. The departure is the forms analysis, fundamental for hierarchizing the units and to define the exposures. The always major climatic parameter, is analysed, on 3 scales (global, regional, local). Then the soils are studied in a logic of toposequence. The aptitudes of the soil are judged according to their interaction with the microclimate of each parcel. Come then from the texture and geochimical analysis, which are only supports for the viticultural practices choices. A cartographic expression is then given. In a foothill, it is the system of the slopes, which guides zoning, but these traditional soils also carry the print of a story human tradition, which must open with modernity while preserving and valorizating its originalities.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean DELFAUD and Roger SABRIER

Géodynamique des Bassins – Université de Pau – CURS-IPRA – BP 1155 – 64013 PAU

Keywords

Piémont gascon, Terroirs, Formes, Climat, Sols, Zonage, Géochimie, Minéraux argileux, Capacité d’échange
Gascon foothill, Vineyard, Morphology, Climate, Soils, Zoning, Geochimistry, Clay minerais, Exchange capacity

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Low-cost sensors as a support tool to monitor soil-plant heat exchanges in a Mediterranean vineyard

Mediterranean viticulture is increasingly exposed to more frequent extreme conditions such as heat waves. These extreme events co-occur with low soil water content, high air vapor pressure deficit and high solar radiant energy fluxes and result in leaf and berry sunburn, lower yield, and berry quality, which is a major constraint for the sustainability of the sector. Grape growers must find ways to proper and effectively manage heat waves and extreme canopy and berry temperatures. Irrigation to keep soil moisture levels and enable adequate plant turgor, and convective and evaporative cooling emerged as a key tool to overcome this major challenge. The effects of irrigation on soil and plant water status are easily quantifiable but the impact of irrigation on soil and canopy temperature and on heat convection from soil to cluster zone remain less characterized. Therefore, a more detailed quantification of vineyard heat fluxes is highly relevant to better understand and implement strategies to limit the effects of extreme weather events on grapevine leaf and berry physiology and vineyards performance. Low-cost sensor technologies emerge as an opportunity to improve monitoring and support decision making in viticulture. However, validation of low-cost sensors is mandatory for practical applicability. A two-year study was carried in a vineyard in Alentejo, south of Portugal, using low-cost thermal cameras (FLIR One, 80×60 pixels and FLIR C5, 160×120 pixels, 8-14 µm, FLIR systems, USA) and pocket thermohygrometers (Extech RHT30, EXTECH instruments, USA) to monitor grapevine and soil temperatures. Preliminary results show that low-cost cameras can detect severe water stress and support the evaluation of vertical canopy temperature variability, providing information on soil surface temperature. All these thermal parameters can be relevant for soil and crop management and be used in decision support systems.

Study of the effect of native vineyard bacteria on the expression of Plasmopara viticolaeffectors

Downy mildew, caused by the oomycete Plasmopara viticola (Berk. & M.A. Curtis) Berl. & De Toni, is one of the most destructive grapevine diseases mostly affecting Vitis vinifera L. and impacting on viticulture. The pathogen invasion can induce in grapevine multiple defense reactions, first PAMP-Triggered Immunity and secondly Effector-Triggered Immunity. Plasmopara viticola can overcome these defense mechanisms through the secretion of effectors, such as RxLR, into the plant cells, making it easier for the oomycete to infect grapevines. Currently, the use of chemical pesticides remains the most effective way to control the pathogen with severe negative side effects on the environment and animal health.

Key learnings about the chemical bases of wine uniqueness and quality, essential companions for future developments

This presentation aims to demonstrate that the value attributed to wine as we today know it is based on three factors: 1) sensory balance, 2) personality, and 3) bioactivity.

Rootstock selection moderates the effect of rising temperatures through drought tolerance and modulation of stomatal conductance

Climate change is increasing crop evapotranspiration and reducing water availability, especially in the Mediterranean area.