Terroir 1996 banner
IVES 9 IVES Conference Series 9 Barbera d’Asti: the characterization of the vineyard sites

Barbera d’Asti: the characterization of the vineyard sites

Abstract

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.

The research has verified the presence of differences among the Barbera d’Asti wines, produced in the area DOC different zones, which could be ascribe to pedological, climatic, viticultural and enological factors. The survey bas divided the producing area of Barbera d’ Asti in large zones which produce different types of wine.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Andrea CELLINO (1), Moreno SOSTER (1), Federico SPANNA (1), Roberto SALANDIN (2), Franco MANNINI (3), Nicola ARGAMANTE (3), Claudio LOVISOLO (4), Andrea SCHUBERT (4), Maurizio GIL Y (5), Gabriella SANLORENZO (5), Rocco DI STEFANO (6), Daniela BORSA (6), Mario UBIGLI (6), Antonella BOSSO (6), Maria Carla CRAVERO (6), Vincenzo GERBI (7), Giuseppe ZEPPA (7), Luca ROLLE (7)

(1) Regione Piemonte- Direzione Sviluppo dell ‘Agricoltura – C.so Stati Uniti 21- 19128 Torino
(2) lstituto per le Piante da Legno e l’ Ambiente- C.so Casale 476- 10132 Torino
(3) Istituto di Virologia Vegetale, Unit  staccata vite – CNR – Via L. Da Vinci 44 – l0095 Grugliasco (TO)
(4) Dipartimento Colture Arboree – Universit  di Torino- Via L. Da Vinci 44 – 10095 Grugliasco (TO)
(5) Vignaioli Piemontesi – Via Alba 15 – 12050 Castagnito (CN)
(6) Istituto Sperimentale per l’Enologia Mi.P.A.F. -Via P. Micca 35 – 14100 Asti
(7) Dipartimento Valorizzazione delle Produzioni e Risorse Agroforestali – Universit  di Torino – Via L. Da Vinci 44 – 10095 Grugliasco (TO)

 

Keywords

Barbera, caractérisation, sous-zonage, texture
Barbera, characterization, sub-zoning, texture

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Characterizing the effects of nitrogen on grapevines with different scion/rootstock combinations: agronomic, metabolomic and transcriptomic approaches

Most vineyards are grafted and include a variety (Vitis vinifera) grafted over a wild Vitis rootstock (hybrids of V. berlandieri, riparia and rupestris). Grape berry quality at harvest depends on a subtle balance between acidity and the concentrations of sugars, polyphenols and precursors of aroma compounds. The mechanisms controlling the balance of sugars/acids/polyphenols are influenced by the abiotic environment, in particular nitrogen supply, and interact with the genotypes of both the scion variety and the rootstock. Previous work suggests that some of the effects of water stress are in fact linked to a nitrogen deficiency driven indirectly by the reduction of water absorption.

The effect of management practices and landscape context on vineyard biodiversity

Intensification is considered one of the major drivers of biodiversity loss in farmland. The more intensive management practices that have been adopted the last decades, contributed to species declines from all taxonomic groups. Moreover, agricultural intensification has led to an important change of land use. Complex, mixed agro-ecosystems with cultivated and non-cultivated habitats have been converted to simplified, intensive and homogeneous ones with severe effects on biodiversity.

Impact of the maturity and the duration of maceration on phenolic composition and sensorial quality of Divico wines

Following its approval in 2013 by Agroscope, Divico became the first interspecific grape variety in Switzerland with high resistance to downy mildew (Plasmopara viticola) and grey rot (Botrytis cinerea), and medium resistance to powdery mildew (Uncinula nectator). Extremely riche in color, Divico grapes showed great enological potential to different styles of wine. Quickly, many wine growers were interested in planting this promising variety. Many of its potential are to be explored in the coming years.

Co-design and evaluation of spatially explicit strategies of adaptation to climate change in a Mediterranean watershed

Climate change challenges differently wine growing systems, depending on their biophysical, sociological and economic features. Therefore, there is a need to locally design and evaluate adaptation strategies combining several technical options, and considering the local opportunities and constraints (e.g. water access, wine typicity). The case study took place in a typical and heterogeneous Mediterranean vineyard of 1,500 ha in the South of France. We developed a participatory modeling approach to (1) conceptualize local climate change issues and design spatially explicit adaptation strategies with stakeholders, (2) numerically evaluate their effects on phenology, yield and irrigation needs under the high-emissions climate change scenario RCP 8.5, and (3) collectively discuss simulation results. We organized five sets of workshops, with in-between modeling phases. A process-based model was developed that allowed to evaluate the effects of six technical options (late varieties, irrigation, water saving by reducing canopy size, adjusting cover cropping, reducing density, and shading) with various distributions in the watershed, as well as vineyard relocation. Overall, we co-designed three adaptation strategies. Delay harvest strategy with late varieties showed little effects on decreasing air temperature during ripening. Water constraint limitation strategy would compensate for production losses if disruptive adaptations (e.g. reduced density) were adopted, and more land got access to irrigation. Relocation strategy would foster high premium wine production in the constrained mountainous areas where grapevine is less impacted by climate change. This research shows that a spatial distribution of technical changes gives room for adaptation to climate change, and that the collaboration with local stakeholders is a key to the identification of relevant adaptation. Further research should explore the potential of adaptation strategies based on soil quality improvement and on water stress tolerant varieties.

PulvéLab: an experimental vineyard for innovation in precision spraying

One of the ways to reduce the use of pesticides is to adapt their dosage to the needs of the plant by using variable rate technology for managing field spatial variability. The recent evolution of technologies in the field of robotics, mechatronics and new information and communication technologies