Terroir 1996 banner
IVES 9 IVES Conference Series 9 Barbera d’Asti: the characterization of the vineyard sites

Barbera d’Asti: the characterization of the vineyard sites

Abstract

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.

The research has verified the presence of differences among the Barbera d’Asti wines, produced in the area DOC different zones, which could be ascribe to pedological, climatic, viticultural and enological factors. The survey bas divided the producing area of Barbera d’ Asti in large zones which produce different types of wine.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Andrea CELLINO (1), Moreno SOSTER (1), Federico SPANNA (1), Roberto SALANDIN (2), Franco MANNINI (3), Nicola ARGAMANTE (3), Claudio LOVISOLO (4), Andrea SCHUBERT (4), Maurizio GIL Y (5), Gabriella SANLORENZO (5), Rocco DI STEFANO (6), Daniela BORSA (6), Mario UBIGLI (6), Antonella BOSSO (6), Maria Carla CRAVERO (6), Vincenzo GERBI (7), Giuseppe ZEPPA (7), Luca ROLLE (7)

(1) Regione Piemonte- Direzione Sviluppo dell ‘Agricoltura – C.so Stati Uniti 21- 19128 Torino
(2) lstituto per le Piante da Legno e l’ Ambiente- C.so Casale 476- 10132 Torino
(3) Istituto di Virologia Vegetale, Unit  staccata vite – CNR – Via L. Da Vinci 44 – l0095 Grugliasco (TO)
(4) Dipartimento Colture Arboree – Universit  di Torino- Via L. Da Vinci 44 – 10095 Grugliasco (TO)
(5) Vignaioli Piemontesi – Via Alba 15 – 12050 Castagnito (CN)
(6) Istituto Sperimentale per l’Enologia Mi.P.A.F. -Via P. Micca 35 – 14100 Asti
(7) Dipartimento Valorizzazione delle Produzioni e Risorse Agroforestali – Universit  di Torino – Via L. Da Vinci 44 – 10095 Grugliasco (TO)

 

Keywords

Barbera, caractérisation, sous-zonage, texture
Barbera, characterization, sub-zoning, texture

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

INTENSE PULSED LIGHT FOR VINEYARD WASTEWATER: A PROMISING NEW PROCESS OF DEGRADATION FOR PESTICIDES

The use of pesticides for vine growing is responsible for generating an important volume of wastewater. In 2009, 13 processes were authorized for wastewater treatment but they are expensive and the toxicological impact of the secondary metabolites that are formed is not clearly established. Recently photodecomposition processes have been studied and proved an effectiveness to degrade pesticides and to modify their structures (Maheswari et al., 2010, Lassale et al., 2014). In this field, Pulsed Light (PL) seems to be an interesting and efficient process (Baranda et al., 2017). Therefore, the aim of this work was to investigate the PL technology as a new process for the degradation of pesticides.

How artificial intelligence (AI) is helping winegrowers to deal with adversity from climate change

Artificial intelligence (AI) for winegrowers refers to robotics, smart sensor technology, and machine learning applied to solve climate change problems. Our research group has developed novel technology based on AI in the vineyard to monitor vineyard growth using computer vision analysis (VitiCanopy App) and grape maturity based on berry cell death to predict flavor and aroma profiles of berries and final wines.

A stratified sampling approach to investigate the impact of climate and maturity on the aroma and phenolic composition of grenache grapes and wines within the poctefa area

Context and purpose of the study. Climate change is affecting wine production and induces a large variability in wine composition between vintages.

Impact of the fumaric acid/glutathione pair addition before bottling on Cabernet Sauvignon wine quality

Over the last decades, climate change and rising temperatures have impacted the wine industry. Wines from warm regions tend to have a higher pH and lower total acidity.

Fluorescence spectroscopy with xgboost discriminant analysis for intraregional wine authentication

AIM: This study aimed to use simultaneous measurements of absorbance, transmittance, and fluorescence excitation-emission matrix (A-TEEM) combined with chemometrics as a rapid method to authenticate wines from three vintages within a single geographical indication (GI) according to their subregional variations