Terroir 1996 banner
IVES 9 IVES Conference Series 9 Barbera d’Asti: the characterization of the vineyard sites

Barbera d’Asti: the characterization of the vineyard sites

Abstract

L’objectif de l’étude est de mettre en évidence les différences rencontrées entre les vins Barbera d’Asti, qui sont produits en AOC. Celles-ci sont imputées aux terroirs caractérisés selon les facteurs pédologiques, climatiques, et qui conduisent à des différents potentiels viticoles et œnologiques. Il est proposé une individualisation des sous-zones.

The research has verified the presence of differences among the Barbera d’Asti wines, produced in the area DOC different zones, which could be ascribe to pedological, climatic, viticultural and enological factors. The survey bas divided the producing area of Barbera d’ Asti in large zones which produce different types of wine.

 

 

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Andrea CELLINO (1), Moreno SOSTER (1), Federico SPANNA (1), Roberto SALANDIN (2), Franco MANNINI (3), Nicola ARGAMANTE (3), Claudio LOVISOLO (4), Andrea SCHUBERT (4), Maurizio GIL Y (5), Gabriella SANLORENZO (5), Rocco DI STEFANO (6), Daniela BORSA (6), Mario UBIGLI (6), Antonella BOSSO (6), Maria Carla CRAVERO (6), Vincenzo GERBI (7), Giuseppe ZEPPA (7), Luca ROLLE (7)

(1) Regione Piemonte- Direzione Sviluppo dell ‘Agricoltura – C.so Stati Uniti 21- 19128 Torino
(2) lstituto per le Piante da Legno e l’ Ambiente- C.so Casale 476- 10132 Torino
(3) Istituto di Virologia Vegetale, Unit  staccata vite – CNR – Via L. Da Vinci 44 – l0095 Grugliasco (TO)
(4) Dipartimento Colture Arboree – Universit  di Torino- Via L. Da Vinci 44 – 10095 Grugliasco (TO)
(5) Vignaioli Piemontesi – Via Alba 15 – 12050 Castagnito (CN)
(6) Istituto Sperimentale per l’Enologia Mi.P.A.F. -Via P. Micca 35 – 14100 Asti
(7) Dipartimento Valorizzazione delle Produzioni e Risorse Agroforestali – Universit  di Torino – Via L. Da Vinci 44 – 10095 Grugliasco (TO)

 

Keywords

Barbera, caractérisation, sous-zonage, texture
Barbera, characterization, sub-zoning, texture

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Technical innovation and quality control of wine production in China

Recent decades have witnessed an evolving trend of diverse product types, improved quality, and green, low-carbon, and sustainable development in chinese wine market. A quality evaluation system, namely, with a dual orientation of “flavor compounds” and “sensory evaluation” is used as guidance for winemaking innovation in China.

Simulated climate change in a Mediterranean organic vineyard altered the plant physiology and decreased the vine production

This study focuses on investigating the effects of climate change on the plant physiology and berries of Vitis vinifera cv “Monastrell” in a commercial vineyard managed organically in Southeastern Spain (Jumilla, Murcia). For this purpose, open top chambers and rainout shelters were employed to simulate warming (~2-7 ºC, W) and rainfall reduction (~30%, RR) respectively. Additionally, a combination of both treatments (W+RR) was employed. Vines without either top chambers or rainout shelters were considered as control (C). The experiment was established in February of 2023. Predawn leaf water potential (measured using a pressure chamber), stomatal conductance (assessed with a porometer at mid-morning) and leaf chlorophyll and flavonoid content (measured using the Dualex® leaf clip sensor) were analyzed at veraison (5 months after the installation of structures).

Association between dietary pattern and wine consumption and Alzheimer’s disease in a cohort from La Rioja (Spain)

Addressing modifiable risk factors is the most promising strategy to prevent/delay Alzheimer Disease (AD)[1]. The aim of the study was to establish the connections between dietetic habits, wine consumption and AD. Thus, 98 volunteers were recruited: 50 diagnosed as AD and 48 healthy/controls. The Food Frequency Questionnaire (FFQ) was used for dietary patterns assessment and, based on these data, the Mind Diet Score was calculated. (Poly)phenol metabolites (especially derived from wine consumption) were analyzed by UPLC-QqQ-MS/MS in 24-h urine samples to confirm dietary (poly)phenol consumption.

Influence of SO2 and Zinc on the formation of volatile aldehydes during alcoholic fermentation

Laboratório de Análisis del Aroma y Enologia (LAAE). Department of Analytical Chemistry, Faculty of Sciences, Universidad de Zaragoza, 50009, Zaragoza, Spain, During alcoholic fermentation, fusel (or Strecker) aldehydes are intermediates in the amino acid catabolism to form fusel alcohols following the Ehrlich Pathway (1). One of the main enzymes involved in this pathway is Alcohol Dehydrogenase (ADH), whose activity is highly strain dependent and determines the rate of conversion of aldehydes into fusel alcohols (2). This enzyme has a Zn2+ catalytic binding site, which suggests that the must Zn2+ levels will most likely influence the rate of reduction of aldehydes into alcohols. On the other hand, SO2 is commonly used in winemaking for its antiseptic and antioxidant properties.

Exploring zoxamide sensitivity in Plasmopara viticola populations: implications for fungicide management in precision agriculture

Fungicides play a critical role in managing grapevine downy mildew caused by the oomycete Plasmopara viticola, a biotrophic and polycyclic pathogen with a high risk of fungicide resistance. Zoxamide, categorized as a low to medium resistance risk, disrupts cell division by inhibiting tubulin polymerization. Resistance to zoxamide is uncommon in field isolates. This six-year study (2017-2022) aimed to detect and quantify zoxamide sensitivity in P. viticola populations across varying resistance pressures in Italian grapevine regions. Analysis of 126 samples from 57 vineyards, mainly in North-Eastern Italy, revealed that most samples exhibited EC50, EC95, and MIC values below 0.1 and 10 mg/L of zoxamide, respectively. Nineteen vineyards showed reduced sensitivity (MIC>100 mg/L), but only four samples were characterized by 24-54% resistant oospores at >100 mg/L of zoxamide.