terclim by ICS banner
IVES 9 IVES Conference Series 9 International Congress on Grapevine and Wine Sciences 9 2ICGWS-2023 9 Evaluation of the effects of pruning methodology on the development of young vines 

Evaluation of the effects of pruning methodology on the development of young vines 

Abstract

Grapevine pruning is one of the most important practices in the vineyards. Winegrowers use it to provide the vines the shape needed, or to maintain it once achieved, and also to balance vegetative growth and fruit production. In the last decades, careless pruning has been blamed, among other factors, as responsible of the vineyard decay that is been observed even in young vines. However, to our knowledge, there is a lack of systematic research trying to elucidate to which extent the pruning method used affects plant development or its susceptibility to grapevine trunk diseases (GTD). Within this context, the aim of this work is to study the influence of different pruning method strategies on the development of field-planted young vines. Two trials were carried out in commercial vineyards planted in 2019 in La Rioja and Navarra, where three pruning criteria were applied: i) control pruning, following the criteria of the winegrowers in the area (CONT); ii) respectful pruning, paying attention to the preferential sap flow pathway and leaving protective wood in the cuts (RESP); and iii) aggressive pruning, not paying attention to sap flow pathways and not leaving protective wood (AGGR). In general, RESP pruning tended to increase shoot growth compared to CONT and AGGR pruning, obtaining higher values of pruning wood weight in winter, and reaching greater yield in the first harvest. In conclusion, the different pruning strategies applied have a significant effect on growth, even though more years of experimentation would be necessary to evaluate their impact on the agronomic behavior and general performance and longevity of the vineyard.

The project (EFA324/19 VITES QUALITAS) has been 65% cofinanced by the European Regional Development Fund (ERDF) through the Interreg V-A Spain-France-Andorra programme (POCTEFA 2014-2020).

DOI:

Publication date: October 5, 2023

Issue: ICGWS 2023

Type: Article

Authors

Mónica Galar1*, Nazareth Torres1-2, Bárbara Sebastián3, Julián Palacios3, Nahiara Juanena1, Ana Villa-Llop1-4, C. Dewasme5, J.P. Roby5, L. Gonzaga Santesteban1-2

1Dpt. of Agronomy, Biotechnology and Food, Public University of Navarre (UPNA), Pamplona, Navarra.
2Institute for Multidisciplinary Research in Applied Biology (IMAB), Pamplona, Navarra.
3Viticultura Viva, S. Martín de Unx, Navarra.
4Vitis Navarra, Road NA132, km. 18, 31251 Larraga, Navarra.
5ISVV, UMR EGFV, 210 Chemin de Leysotte CS50008 33 882 Villenave d’Ornon

Contact the author*

Keywords

grapevine pruning, grapevine trunk disease, longevity

Tags

2ICGWS | ICGWS | ICGWS 2023 | IVES Conference Series

Citation

Related articles…

Effect of biological control agents on grapevine rhizosphere microbiome and grapevine defenses

Plant diseases are a major obstacle to crop production. The main approaches to battle plant diseases, consist of synthetic chemicals to attack infecting pathogens. However, concerns are increasing about the effects of chemicals in the environment, leading to an increase in the use of biocontrol agents (BCAs), due to their assets, such as, antagonism, and competition. In this study, we tested the hypothesis that the introduction of Bacillus subtilis PTA-271 (Bs PTA-271) and Trichoderma atroviride SC1 (Ta SC1) produce distinctive modifications in the composition and network structure of the grapevine rhizosphere microbial community, as well as grapevine induced defenses.

Phenolic composition profile of cv. Tempranillo wines obtained from severe shoot pruning vines under semiarid conditions

One of the limitations of vineyards in warm areas is the loss of wine quality due to higher temperatures during the grape ripening period. In order to adapt the vineyards to these new climatic conditions, a possible solution is to delay the ripening process of the grapes towards periods with milder temperatures, by means of management practices and thus improve the quality of the fruit and the wine produced. The technique of severe shoot pruning (SSP) has proven useful in achieving this objective.

Sustainable management of grapevine trunk diseases

Grapevine trunk diseases (GTD) occur wherever grapes are grown and are considered the main biotic factor reducing yields and shortening vineyards’ lifespan. Currently, no product is available to eradicate GTD once grapevines are infected. Therefore, prophylactic strategies based on pruning wound protection and ‘remedial surgery’, the only eradication method based on the elimination of infected wood and renewal of the vine by means of new canes or suckers, are the only effective strategies available. The Canadian grape and wine industry focusses on a sustainable production and thus, looking for alternatives to chemicals for disease management is a top priority.

Vineyard management practices to reduce sugar content on ‘Monastrell’ grapes

Climate change is resulting in more dry and hot summers, accelerating grape ripening and increasing berry sugars concentration. This results in wines with a higher alcohol content, which has a negative impact on wine quality, as well as, on consumer health. Agronomic practices that minimize these effects on berry composition and, consequently, on wine quality must be defined. In this work, different management practices have been assessed on rainfed ‘Monastrell’ grapevines in Jumilla (Murcia, Spain) from 2021 to 2023 vintages. Mulching, shading, application of kaolin and different types of pruning were evaluated, among others field adaptation practices.

Characterization of a Sémillon clonal population: exploring genetic diversity, metabolomic profiles, and phenotypic variations

Sémillon is a cultivated grape variety known for contributing to dry and sweet white wine production. However, only seven approved clones have been officially recognized in France[1]. In this study, we aimed to characterize the genetic diversity and metabolomic profiles of a Sémillon clonal population, shedding light on the potential variations within this important grape variety.