Terroir 1996 banner
IVES 9 IVES Conference Series 9 From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

From geomorphological analysis to terroirs geo-pedological zonation: the Madiran and Pacherenc of Vic-Bilh A.O.C. as case of study

Abstract

L’aire des A.O.C. Madiran et Pacherenc du Vic-Bilh est située sur le piémont nord-occidental des Pyrénées, au nord du cône de Ger. Sa délimitation parcellaire a été complétée par une étude géo-pédologique systématique. L’analyse du modelé des échines dissymétriques qui portent le vignoble montre que la nature et la distribution des formations superficielles sont contrôlées par les systèmes de pente et les roches mères. Une carte géomorphologique au 1/50000 a guidé l’implantation de 37 topolithoséquences analysées à l’aide de 227 profils ouverts. La synthèse des études de terrain et des analyses physico-chimiques (pH, texture, capacité d’échange, minéraux argileux … ) permet de définir 12 types de sols. Le regroupement de ces unités aboutit à deux cartes pédologiques d’échelles complémentaires au 1/25000 pour la zone test du bassin du Bergons et au 1/50000 pour l’aire des A.O.C. Le contexte géomorphologique, la nature des substrats et les propriétés physico-chimiques des sols définissent leurs potentialités agronomiques et une hiérarchisation en quatre classes d’aptitudes viticoles.

The A.O.C. Madiran and Pacherenc of Vic-Bilh area is located in the northwestern piedmont of the Pyrénées, in the north of the Ger cone. lts delimitation was complemented by a systematic geo-pedological study. The geomorphologic analysis of the vineyard dissymmetrical relieves shows that the type and the distribution of the surficial formations are controlled by the slope systems and the parent rocks. A physiographic map at 1/50000 scale guided to establish 37 topolithosequences studied with 227 soil profiles. The synthesis of the field works together with physico-chemical analysis (pH, texture, exchange capacity, clay minerais … ) permits to characterize 12 soils types. These units are consolidated in order to present two pedological maps at complementary scales: 1/25000 for the Bergons basin test zone and 1/50000 for the A.O.C. surface. The geomorphological context, the type of the substrates and the physico-chemical properties of these soils define their agronomic potentialities and a hierarchization in four wine-producing aptitude classes.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

D. CHAUVAUD

Université de Pau et des Pays de l’ Adour, Laboratoire de Géodynamique et Modélisation des Bassins Sédimentaires, CURS-IPRA – B.P. 1155 – 64013 Pau Cédex

Keywords

vignoble, analyse géomorphologique, carte géomorphologique, topolithoséquences, cartes pédologiques, aptitudes viticoles des sols
vineyard, geomorphological analysis, physiographic map, .topolithosequences, pedological maps, wine producing aptitudes of soils

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen

The sensitivity to ABA affects the cross-talk between scion/rootstock in tolerant grapevines to drought stress

Drought caused by climate change has a dramatic incidence on the vineyard. Despite employing specific rootstocks tolerant to drought like 110 Richter, the vineyard continues to experience various losses, revealing the importance of the scion cultivar in the adaptation to drought stress. In this regard, Merlot, a widely cultivated grapevine, exhibited reduced drought tolerance compared to less cultivated varieties like Callet, a local cultivar originating from the Balearic Islands that demonstrated greater resilience to drought. Therefore, understanding the drought stress response in both cultivars and the cross-talk between scion and rootstock is key to unveiling possible differences that could affect to the adaptation to drought in vineyard.

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also
the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural
practices need to be examined to decrease the levels of sugars.

Uncovering the interplay between Copper and SO2 tolerance in Saccharomyces cerevisiae

[lwp_divi_breadcrumbs home_text="IVES" use_before_icon="on" before_icon="||divi||400" module_id="publication-ariane" _builder_version="4.20.4" _module_preset="default" module_text_align="center" module_font_size="16px" text_orientation="center"...