terclim by ICS banner
IVES 9 IVES Conference Series 9 ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

ANTI-TRANSPIRANT MODULATION OF GRAPE RIPENING: EFFECTS ON MERLOT VINE DEVELOPMENT AND ROSÉ WINE PHENOLIC AND AROMATIC PROFILES

Abstract

Climate changes are impacting viticultural regions throughout the world with temperature increases being most prevalent.1 These changes will not only impact the regions capable of growing grapes, but also the grapes that can be grown.2 As temperatures rise the growing degree days increase and with it the sugar accumulation within the berries and subsequent alcohol levels in wine. Consequently, viticultural practices need to be examined to decrease the levels of sugars. Anti-transpirants have been used to some degree of success, however their benefits may be linked to the varietal and style of wine produced.3 With this in mind we undertook a study of anti-transpirant application to merlot grapes to determine its effectiveness for reducing alcohol in Rosé wines.

The trial was performed in a commercial vineyard in the Hawke’s Bay region of New Zealand. The vines were two cane pruned and the vineyard was managed under conventional practices. The trial was setup as a randomized block design with five vines per block. Anti-transpirant was applied using a backpack sprayer to upper portion of the canopy to the point of run off at véraison. The berries were then harvested by hand at 18 °Brix and wine making using a standardized wine making protocol at the research winery.

The harvest dates were delayed between the treated and untreated vines. The treated wines were found to have a higher pH, lower titratable acidity, and increased total phenolics. The aroma compound analysis resulted in several significant differences that were noted in the sensory evaluation. In both vintages the control wines were found to be influenced by green, vegetal, and earthy notes while the treated wines were found to be influenced by fruit aromas. These sensory attributes were confirmed by examining the aromatic compounds by PCA. This resulted in the controls being influenced by methoxypyrazines and alcohols and a few esters, compared to treated wines which were influenced by esters and terpenoids.

In conclusion, we were able to show that the application of anti-transpirant was able to dissociate the ripening process of Merlot grapes. Its application decreased sugar production but allowed for aromatic compound production. This demonstrates the potential effectiveness for anti-transpirants to control sugar in grape production to mitigate increased temperatures. These results indicate that further research is necessary to optimize the application timing of the anti-transpirant.

 

1. Van Leeuwen, C. D.-I., A.; Dubernet, M.; Duchêne, E.; Gowdy, M.; Marguerit, E.; Pieri, P.; Parker, A.; de Rességuier, L.; Ollat, N. (2019). An Update on the Impact of Climate Change in Viticulture and Potential Adaptations. Agronomy, 9, 514
2. Parker, A. K., García de Cortázar-Atauri, I., Gény, L., Spring, J.-L., Destrac, A., Schultz, H., Molitor, D., Lacombe, T., Graça, A., Monamy, C., Stoll, M., Storchi, P., Trought, M. C. T., Hofmann, R. W., & van Leeuwen, C. (2020). Temperature-based grape-vine sugar ripeness modelling for a wide range of Vitis vinifera L. cultivars. Agricultural and Forest Meteorology, 285-286, 107902.
3. Di Vaio, C., Marallo, N., Di Lorenzo, R., & Pisciotta, A. (2019). Anti-Transpirant Effects on Vine Physiology, Berry and Wine Composition of cv. Aglianico (Vitis vinifera L.) Grown in South Italy. Agronomy, 9(5), 244.

DOI:

Publication date: February 9, 2024

Issue: OENO Macrowine 2023

Type: Article

Authors

Kenneth Olejar1, Petra King2, Carmo Vasconcelos3, Elise Montgomery4, Karen Ball5, Stewart Field6

1 Appalchian State University, Department of Chemistry and Fermentation Sciences, Boone, NC, USA
2 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
3 Bragato Research Institute, Blenheim, New Zealand
4 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Taradale, New Zealand
5 Easten Institute of Technology, Department of Viticulture and Wine, Taradale, New Zealand
6 New Zealand Institute of Skills and Technology, Department of Viticulture and Wine, Blenheim, New Zealand

Contact the author*

Keywords

dissociatedripenin, glow-alcohol wine, wine sensory, wine aroma

Tags

IVES Conference Series | oeno macrowine 2023 | oeno-macrowine

Citation

Related articles…

Metabolomics for grape and wine research: exploring the contributions of amino acids to wine flavour

A critical aspect of wine quality is the overall expression of wine flavour, which is formed by the interplay of volatile aroma compounds, their precursors, and taste and matrix components. Grapes directly contribute to wine only a small number of potent aroma compounds, and the unique sensory attributes and perceived quality of a wine result from combining 100s of metabolites of grapes, yeast and bacteria, and oak wood.

ASSESSMENT OF ‘DOLCETTO’ GRAPES AND WINES FROM DIFFERENT AREAS OF OVADA DOCG

Dolcetto (Vitis vinifera L.) is one of the traditionally cultivated varieties in Piedmont (north-east Italy). Dolcetto wines have long been associated with local consumption and they are little known internationally. In particular, the Ovada area (south-east Piedmont), even if it represents a small share of the regional PDO Dolcetto production, is one of the oldest and vocated territory, giving wine also suitable for aging. In this study, the basic composition and phenolic content of Dolcetto grapes for Ovada DOCG wines have been investigated in three different vintages (2020-2022), as well as the main aspects of the derived commercial and experimental wines (basic parameters, phenolics, volatile compounds, sensory properties).

‘TROPICAL’ POLYFUNCTIONAL THIOLS AND THEIR ROLE IN AUSTRALIAN RED WINES

Following anecdotal evidence of unwanted ‘tropical’ character in red wines resulting from vineyard interventions and a subsequent yeast trial observing higher ‘red fruit’ character correlated with higher thiol concentrations, the role of polyfunctional thiols in commercial Australian red wines was investigated.
First, trials into the known tropical thiol modulation technique of foliar applications of sulfur and urea were conducted in parallel on Chardonnay and Shiraz.1 The Chardonnay wines showed expected results with elevated concentrations of 3-sulfanylhexanol (3-SH) and 3-sulfanylhexyl acetate (3-SHA), whereas the Shiraz wines lacked 3-SHA. Furthermore, the Shiraz wines were described as ‘drain’ (known as ‘reductive’ aroma character) during sensory evaluation although they did not contain thiols traditionally associated with ‘reductive’ thiols (H2S, methanethiol etc.).

INSIGHTS ON THE ROLE OF GENES ON AROMA FORMATION OF WINES

Yeast secondary metabolism is a complex network of biochemical pathways and the genetic profile of the yeast carrying out the alcoholic fermentation is obviously important in the formation of the metabolites conferring specific odors to wine. The aim of the present research was to investigate the relative expression of genes involved in flavor compound production in eight different Saccharomyces cerevisiae strains.
Two commercial yeast strains Sc1 (S.cerevisiae x S.bayanus) and Sc2 (S.cerevisiae) and six indigenous S. cerevisiae strains (Sc3, Sc4, Sc5, Sc6, Sc7, Sc8) isolated during spontaneous fermentations were inoculated in Assyrtiko and Vidiano grape must.

REGULATION OF CENTRAL METABOLISM IN THE LEAVES OF A GRAPE VINES VA- RIETAL COLLECTION ON A TEMPERATURE CLINE

Grape (Vitis vinifera) is one of the world’s oldest agricultural fruit crops, grown for wine, table grape, raisin, and other products. One of the factors that can cause a reduction in the grape growing area is temperature rise due to climate change. Elevated temperature causes changes in grapevine phenology and fruit chemical composition. Previous studies showed that grape varieties respond differently to a temperature shift of 1.5°C; few varieties had difficulties in the fruit development or could not reach the desired Brix level.