Terroir 1996 banner
IVES 9 IVES Conference Series 9 Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Abstract

Pendant une période de trois années le comportement productif et qualitatif de trois cépages tous indigènes de la région de Campania (Italie méridionale) dans deux terroirs de l’île d’Ischia a été étudié; ceci pour obtenir quelques indications préliminaires sur le comportement productif et qualitatif des cépages et sur la qualité des vins. Les résultats obtenus indiquent la non-existence de facteurs limitants pour la culture de tous les cultivars testés dans les terroirs considérés. Le comportement des cépages et la qualité des vins obtenus la plupart du temps ont été plus influencée par le «facteur cépages» que par le «facteur terroir». Le vin de Biancolella a été catalogué comme «acceptable». Greco et Fiano comme «bon».

During a three year period the productive and qualitative behaviour of three grapevines, all native of the Campania region (Southern ltaly), in two distinguished environments of the Ischia island it has been studied, with the aim to obtain some preliminary indications on the productive and qualitative grapevines behaviour and on the quality of the obtainable wines. The results indicate the nonexistence, for all the tested cultivars, of limiting factors their cultivation in the considered environments. The grapevines behaviour and the quality of the obtained wines mostly were influenced by the “grapevine factor” than by the “terroir factor”. Biancolella wine was categorised as “acceptable”, Greco and Fiano as “good”.

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

G. SCAGLIONE*, C. PASQUARELLA* and M. NADAL**

*Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli, “Federico II”
**Departament de Bioquimica i Biotecnologia Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili

Contact the author

Keywords

Cépages, terroir, vins
Grapevines, environment (terroir), wine

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Climate change projections to support the transition to climate-smart viticulture

The Earth’s system is undergoing major changes through a wide range of spatial and temporal scales as a response to growing anthropogenic radiative forcing, which is pushing the whole system far beyond its natural variability. Sources of greenhouse gases largely exceed their sinks, thus leading to a strengthened greenhouse effect. More energy is thereby being supplied to the system, with inevitable shifts in climatic patterns and weather regimes. Over the last decades, these modifications have been manifested in the full statistical distributions of the atmospheric variables, with dramatic changes in the frequency and intensity of extremes. Natural hazards, such as severe droughts, floods, forest fires, or heatwaves, are being triggered by extreme atmospheric events worldwide, thus threatening human activities. Viticultculture is not only exposed to changing climates but is also highly vulnerable, as grapevine phenology and physiological development are strongly controlled by atmospheric conditions. Therefore, the assessment of climate change projections for a given region is critical for climate change adaptation and risk reduction in viticulture. By adopting timely and suitable measures, the future sustainability and resiliency of the sector can be fostered. Climate-grapevine chain modelling is an essential tool for better planning and management. However, the accuracy of the resulting projections is limited by many uncertainties that must be duly taken into account when transferring knowledge to stakeholders and decision-makers. Climate-smart viticulture will comprise ensembles of locally tuned strategies, envisioning both adaptation and mitigation, assisted by emerging technologies and decision-support systems.

Origin of unpleasant smelling sulphur compounds during wine fermentation

The wine sector is undergoing considerable transformation, particularly as a result of climate change and increasing consumer expectations for quality products, in a globalised and increasingly competitive market.

Re-examination and meta-analysis of previous research as a tool to evaluate the suitability of rootstocks in adaptation to global change. A study case from Spanish viticulture

Meta-analysis (MA) is a method that allows statistical synthesis of the results of several similar individual studies (Figure 1). This term was introduced by Glass in 1976 as a useful tool for the scientific community to pool and summarise the enormous amount of information collected in the literature.

Energy partitioning and functionality of photosystem II in water-stressed grapevines during heatwaves revealed by continuous measurements of chlorophyll fluorescence

The increased intensity and frequency of heatwaves, coupled with prolonged periods of drought, are a significant threat to viticulture worldwide. During these conditions the more exposed leaves can show visible symptoms of heat damage. We monitored the functionality of photosystem II (PSII) in the field to better understand the impact of heatwaves on canopy performance. A factorial experiment was established in summer 2023 using Shiraz grapevines in the Barossa valley of South Australia, involving water-stressed and well-watered vines.

Effect of vine nitrogen status on grape and wine quality: Terroir study in the Vaud vineyard (Switzerland)

This study was conducted on soil-climate-plant relations (terroir) and their impact on grape composition and wine quality in the canton of Vaud by Agroscope Changins-Wädenswil ACW