Terroir 1996 banner
IVES 9 IVES Conference Series 9 Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Genotype-environment interaction of three cultivars of vitis vinifera L. cultivated in two different environments of the Ischia island: effect on production and quality; aspects of the quality of the obtained wines

Abstract

Pendant une période de trois années le comportement productif et qualitatif de trois cépages tous indigènes de la région de Campania (Italie méridionale) dans deux terroirs de l’île d’Ischia a été étudié; ceci pour obtenir quelques indications préliminaires sur le comportement productif et qualitatif des cépages et sur la qualité des vins. Les résultats obtenus indiquent la non-existence de facteurs limitants pour la culture de tous les cultivars testés dans les terroirs considérés. Le comportement des cépages et la qualité des vins obtenus la plupart du temps ont été plus influencée par le «facteur cépages» que par le «facteur terroir». Le vin de Biancolella a été catalogué comme «acceptable». Greco et Fiano comme «bon».

During a three year period the productive and qualitative behaviour of three grapevines, all native of the Campania region (Southern ltaly), in two distinguished environments of the Ischia island it has been studied, with the aim to obtain some preliminary indications on the productive and qualitative grapevines behaviour and on the quality of the obtainable wines. The results indicate the nonexistence, for all the tested cultivars, of limiting factors their cultivation in the considered environments. The grapevines behaviour and the quality of the obtained wines mostly were influenced by the “grapevine factor” than by the “terroir factor”. Biancolella wine was categorised as “acceptable”, Greco and Fiano as “good”.

 

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

G. SCAGLIONE*, C. PASQUARELLA* and M. NADAL**

*Dipartimento d’Arboricoltura, Botanica e Patologia Vegetale, Università degli Studi di Napoli, “Federico II”
**Departament de Bioquimica i Biotecnologia Facultat d’Enologia de Tarragona, Universitat Rovira i Virgili

Contact the author

Keywords

Cépages, terroir, vins
Grapevines, environment (terroir), wine

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Influence of plant growth regulators and water deficit on cv. Krissy table grape

Context and purpose of the study. The quality of table grape clusters significantly affects consumer perception and market value, with berry size, texture, color, and overall appearance playing key roles.

Sélection génétique des variétés originelles d’Arménie, berceau de la viticulture mondiale

Armenia, a small country in the South of the Caucasus, has been rediscovering its wine-growing past since the discovery in 2007 of archaeological wine-growing remains dating back around 8,000 years. They are among the oldest in the world. Despite a great diversity of grape varieties, Armenian winegrowers did not have sufficiently organized genetic collections to produce plants and satisfy the growing demand for planting.

Assessing the climate change vulnerability of European winegrowing regions by combining exposure, sensitivity and adaptive capacity indicators

Winegrowing regions recognized as protected designations of origin (PDOs) are closely tied to well defined geographic locations with a specific set of pedoclimatic attributes and strictly regulated by legal specifications. However, climate change is increasingly threatening these regions by changing local conditions and altering winegrowing processes. The vulnerability to these changes is largely heterogenous across different winegrowing regions because it is determined by individual characteristics of each region, including the capacity to adapt to new climatic conditions and the sensitivity to climate change, which depend not only on natural, but also socioeconomic and legal factors. Accurate vulnerability assessments therefore need to combine information about adaptive capacity and climate change sensitivity with projected exposure to new climatic conditions. However, most existing studies focus on specific impacts neglecting important interactions between the different factors that determine climate change vulnerability. Here, we present the first comprehensive vulnerability assessment of European wine PDOs that spatially combines multiple indicators of adaptive capacity and climate change sensitivity with high-resolution climate projections. We found that the climate change vulnerability of PDO areas largely depends on the complex interactions between physical and socioeconomic factors. Homogenous topographic conditions and a narrow varietal spectrum increase climate change vulnerability, while the skills and education of farmers, together with a good economic situation, decrease their vulnerability. Assessments of climate change consequences therefore need to consider multiple variables as well as their interrelations to provide a comprehensive understanding of the expected impacts of climate change on European PDOs. Our results provide the first vulnerability assessment for European winegrowing regions at high spatiotemporal resolution that includes multiple factors related to climate exposure, sensitivity, and adaptive capacity on the level of single winegrowing regions. They will therefore help to identify hot spots of climate change vulnerability among European PDOs and efficiently direct adaptation strategies.

Use of uv light for suppression of grapevine diseases

Microbial pathogens of plant have evolved to sense, interpret, and use light to direct their development. One aspect of this evolved relationship is photolyase-mediated repair of UV-induced damage to pathogen DNA. Application of germicidal UV (UV-C) at night circumvents the blue light-driven repair of pathogen DNA and allows non-phytotoxic doses of UV-C to suppress a variety of pathogenic microbes and even certain arthropod pests without damage to vines or fruit. Lamps arrays have been designed specifically for the canopy architecture of grapevines and have been deployed on both tractor-drawn and robotic carriages for partial to near-complete suppression of powdery mildew (Erysiphe necator), sour rot (fungal, bacterial, and arthropod complex), and downy mildew (Plasmopara viticola).

Lamp – a modern tool for the detection of fungal infections in the vineyard

AIM: Loop-mediated isothermal amplification (LAMP) [1] is a modern technology for fast and sensitive amplification of specific DNA sequences under isothermal conditions. Its simple handling and no need for dedicated equipment together with an evaluation of the amplification event by in-tube detection make this method advantageous and economically affordable for on-site investigations in the industry.