Banner terroir 2002
IVES 9 IVES Conference Series 9 Improvement of the red wine AOC Grignolino d’Asti typicality using some technological innovations

Improvement of the red wine AOC Grignolino d’Asti typicality using some technological innovations

Abstract

[English version below]

L’AOC Grignolino d’Asti (20000 hl environ de production) est un vin de la province de Asti, produit avec le raisin rouge du cépage de même nom originaire du Piémont (Nord-Ouest d’Italie). Ces derniers temps l’AOC a enregistré des pertes économiques considérables dues aux caractéristiques peu agréables des vins : couleur (nuances jaune-orangée), l’astringence et l’amertume plutôt évidentes. Le but de ce travail est la valorisation sernorielle du vin dans le respect de sa typicité. Nous avons étudié trois techniques récentes de vinification : la microoxygénation, l’utilisation de préparations enzymatiques, la macération à froid. Également, nous avons défini la typicité et évalué l’acceptabilité de vins du Grignolino d’Asti du commerce, des vins expérimentaux et de leurs témoins. Les résultats de la première année d’étude montrent que les techniques utilisées n’ont pas modifié la typicité du vin, mais n’ont pas apporté d’amélioration qualitative.

 

The AOC Grignolino d’Asti (about 20.000 hl produced) is a red wine of the Asti province; it is produced with the same red grape variety, which is native of Piedmont (North-West of Italy). In the last years it has been observed a drop in its sales, probably due to the unpleasant characteristics of its colour (yellow tones) and to its evident astringency and bitterness. The aim of this work is to improve the sensory characteristics of this wine respecting its typicality. We applied three rew winemaking techniques: the micro-oxygenation, the use of enzymes and the cold maceration. The typicality of this wine has been defined and aiso the acceptability of some commercial wines and of the experimental wines. The results of the first year of studies show that none of the winemaking techniques used improve the quality of this product.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Mario UBIGLI (1), Maria Carla CRAVER0 (1), Pierstefano BERTA (3), Mario REDOGLIA (2), Elena MAROCCO (2), Igor ZANZOTTERA (1), Cristina PONTE (1)

(1) Istituto Sperimentale per l’Enologia, via P.Micca, 35 – 14100 ASTI
(2) Agriconsult – Corso Einaudi, 114 – 14100 ASTI
(3) OICCE – Corso Libertà, 61 – 14053 CANELLI

Contact the author

Keywords

AOC Grignolino d’Asti, analyse sensorielle, technologies avancées, typicité, marché
AOC Grignolino d’Asti, sensory analysis, technologicaI innovations, typicality, market

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

The informative potential of remote and proximal sensing application on vertical- and overhead-trained vineyards in Northeast Italy

The application of remote and proximal sensing in viticulture have been demonstrated as a fast and efficient method to monitor vegetative and physiological parameters of grapevines. The collection of these parameters could be highly valuable to derive information on associated yield and quality traits in the vineyard. However, to leverage the informative potential of the sensing systems, a series of preliminary evaluations should be carried out to standardize working protocols for the specific features of a winegrowing area (e.g., pedoclimate, topography, cultivar, training system). This work aims at evaluating remote and proximal sensing systems for their performance and suitability to provide information on the vegetative, physiological, yield and qualitative aspects of vines and grapes as a function of different training systems in the Valpolicella wine region (Verona, Italy).

Dispersive liquid-liquid microextraction for the quantification of terpens in wines

In a highly competitive worldwide market, a current challenge for the beverage sector is to diversify the range of products and to offer wines and spirits with typicity and character.

During alcoholic fermentation, wine yeasts generate a large variety of volatile metabolites, including acetate esters, ethyl fatty acid esters, higher alcohols, volatile fatty acids and volatile sulfur compounds that contribute to the aroma profile of wine. These molecules, refered as fermentative aromas, are the most abundant volatile compounds synthetized by yeasts and the metabolic pathways involved in their formation have been well characterized. Furthermore, other molecules with a major organoleptic impact may be produced during wine fermentation including terpene derivatives. However, little information is available on the contribution of yeasts to the formation of these molecules, in particular on their ability to synthethise de novo the terpens derivatives or to produce hydrolytic enzymes involved in the release of varietal precursors.

Chemical and sensory characterization of Xinomavro PDO red wine

Aroma is considered one of the most important factors in determining the quality and character of wine. The relationship between wine character and its volatile composition is recognized by several researchers worldwide. Since these compounds influence the sensory perceptions of consumers, both volatile composition and sensory properties are essential in determining wine aroma characteristics.

Diversity in grape composition for sugars and acidity opens options to mitigate the effect of warming during ripening

The marked climate change impact on vine and grape development (phenology, sugar content, acidity …) is one of the manifestations of Genotype X Environment X Management interactions importance in viticulture. Some practices, such as irrigation, can mitigate the effect of water deficit on grape development, but warming is much more difficult to challenge. High temperatures tend to alter the acid balance of the fruit with a parallel increase in sugar concentration. In the long term, genetic improvement to select varieties better coping with temperature elevation appear as a good option to support sustainable viticulture. Nevertheless, the existing phenotypic diversity for grape quality components that are influenced by temperature is poorly understood, which jeopardizes breeding strategies.

Rootstock-scion contributions to seasonal water and light use diversity under field conditions

Cultivar and rootstock selection are two well-known strategies for adapting vine production in challenging environments. Despite the vast diversity of rootstocks and cultivars, their effective contribution to grapevine sustainable development and acclimation to changing growing conditions remains an open question. The use of robust and prompt monitoring tools can allow a powerful screening of the water status of the vineyard before considering a further detailed characterization. This study leveraged new tools to monitor the stomatal conductance (gs), transpiration rate (E), and quantum efficiency of photosystem II (ᶲPSII) throughout a season, from pre-veraison to after-harvest.