Terroir 1996 banner
IVES 9 IVES Conference Series 9 Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Methodology and zoning of A.O.C. natural soils. Example of “Pic Saint-Loup”

Abstract

[English version below]

Les travaux menés, dans le cadre du programme départemental pour la connaissance et la valorisation des terroirs viticoles, sur l’aire A.O.C. Coteaux du Languedoc / Pic Saint-Loup ont permis d’appliquer à l’échelle d’une Appellation d’Origine Contrôlée (13 communes), une méthodologie d’étude axée sur les aspects sol/climat/topographie qui concourent à l’identification des terroirs naturels, facteurs de typicité des vins. Dans un premier temps, un «diagnostic» de l’ensemble des critères du milieu naturel a été réalisé. Après avoir défini le cadre géologique, une prospection agro-pédologique au 1/10.000ème a permis de cartographier les différentes unités de sol ainsi que leurs positions topographiques. Les conditions climatiques sont également précisées d’un point de vue statistique (stations météo au sein de l’aire et stations limitrophes).

Dans un second temps, il était intéressant d’associer plus étroitement ces caractéristiques agro­environnementales à la culture de la vigne et à l’élaboration d’un vin typique. On approche ainsi au plus près de la notion de «terroir». Dans ce cadre, une singularité bioclimatique du Pic Saint-Loup a été identifiée sur la base de 3 indices viticoles corrélés à des caractéristiques intrinsèques et spécifiques des vins du Pic Saint-Loup. Les différentes unités de terroir naturel ont été cartographiées (typologie du sol, avec une estimation de la disponibilité en eau, associée au bilan radiatif) et décrites sous les différents aspects qui font leurs identités.

The works led, within the local program for the knowledge and the valorization of the wine soils, on the area A.O.C. Coteaux du Languedoc / Pic Saint-Loup allowed to apply on the scale of a registrated appellation origin (13 municipalities), a methodology of study centered on aspects ground/climate/topography which contribute to the identification of natural soils, factors of typical wines. At first, a «diagnosis » of ail the criteria of the natural environment was realized. Having definite the geologic frame, an agro-pedological prospecting to the 1/10.000th allowed mapping the various unities of ground as well as their topographic positions. The climatic conditions are also clarified by a statistical point of view (meteorological stations within the area and bordering stations).

In a second time, it was interesting to associate more strictly these agro-environmental characteristics to the culture of the vineyard and to the elaboration of a typical wine. One approaches so in closer the notion of “soil”. In this frame, a bioclimatic peculiarity of the Pic Saint Loup was identified on the basis of 3 wine indicators correlated in intrinsic and specific characteristics of wines of Pic Saint Loup. The various units of natural soil were mapped (typology of ground, with an estimation of the availability in water, associated to the radiative assessment) and described under the various aspects which make their identities.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Jean-Paul STORAÏ (1), Jean-Luc TONDUT (2)

(1) Conseil général de l’Hérault – 1000 rue d’Alco – F. 34087 Montpellier cedex 4
(2) Association Climatologique de l’Hérault – 85 avenue d’Assas – F 34000 Montpellier

Keywords

méthodologie, terroir naturel, sol, climat, viticulture
methodology, natural soil, ground, climate, vine growing(2) Association Climatologique de l’Hérault – 85 avenue d’Assas – F 34000 Montpellier

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Significance of factors making Riesling an iconic grape variety

Riesling is the iconic grape variety of Germany and accounts for 23% of the German viticulture acreage, which comprises 45% of the worldwide Riesling plantings.

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Enological technics to enhance the aromatic qualities of white spirits 

Eugenol has been identified as a quality marker in armagnac white spirits. In particular, those produced from the Baco blanc variety, the only hybrid variety authorised in a French PDO, bred since 1898 from noah (vitis labrusca x v.riparia) and folle blanche (v. Vinifera). The varietal compound of Baco blanc, eugenol has many original properties.

Histoire des Vitis depuis leurs origines possibles sur la Pangée jusqu’aux cépages cultivés : un exemple de résilience liée à la biodiversité des espèces

The first forms of life on earth were bacteria and single-celled blue-green algae. They evolved into land plants around 500 million years ago, developing mechanisms for surviving on land, such as roots, stems and leaves. This evolution also led them to coexist with other organisms, such as insects and animals, for pollination and seed dispersal, as well as to resist environmental factors such as drought and disease.

A multidisciplinary approach to evaluate the effects of the training system on the performance of “Aglianico del Vulture” vineyards

Vineyards are complex agro-ecosystems with high spatial and temporal variability. An efficient training system may counteract the adverse effects of this variability. Moreover, considering the climate change issues, choosing an efficient training system that enhances water use and protects the vines from radiative thermal stress has become a priority for the farmers. A multidisciplinary approach that assesses the soil-crop-yield-wine relationships of vineyards in a distributed and holistic way could bring added knowledge on the behavior of the different training systems. This ongoing research aimed to implement a multidisciplinary approach to study the behavior of “Aglianico del Vulture” grapevines trained with two different systems: a spurred cordon (SC) and an “Alberello in parete” (AL), grown in a high-quality wine production area of Basilicata region (Italy). The approach merged several methods and scales of soil, ecophysiology, must/wine quality, and spectral data collection to assess the influence of the training system. Homogeneous zones (HZs) in both training systems were defined through a procedure based on geomorphological classification, unmanned aerial vehicles (UAV) images analysis, and a traditional soil survey supported by geophysical scanning. During the 2021 season, TDR probes monitored soil water content, while grapevine health status was assessed using eco-physiological measurements (LWP, chlorophyll content, PSII photosynthetic efficiency, LAI, and point-based field spectroscopy). These grapevine in-vivo measurements validated the spectral vegetation indexes (NDVI, RENDVI, CVI, and TVI) derived from the UAV multispectral imagery, which monitored the grapevine status in a distributed and non-invasive way. Grape yield, quality of berries, must and wine were measured to assess the effects of the training systems. The first experimental year results showed the variability of the vineyards and revealed relationships among soil parameters, crop characteristics, and vegetation indices of the SC and AL training systems. This multidisciplinary study could bring new insights into the vineyard training system’s effects on grape yield and wine quality.