Terroir 1996 banner
IVES 9 IVES Conference Series 9 Natural variability and vine-growers behaviour

Natural variability and vine-growers behaviour

Abstract

[English version below]

Le vigneron est confronté à une variabilité naturelle omniprésente, liée au millésime et aux facteurs pédoclimatiques. Depuis 10 ans, en Champagne, la relation qu’entretient le vigneron avec l’espace a évolué. Les exemples d’entreprises collectives à vocation territoriale se sont multipliés : gestion de l’hydraulique viticole, maillages de groupements de conseil viticole (Magister), sites en confusion sexuelle, réseau maturation, analyses de sols par secteur, … Parallèlement, au niveau technique, des travaux de caractérisation du milieu naturel ont été initiés début 1990 en Champagne. Un réseau de stations climatiques a été mis en place, des cartographies de sols ont été dressées, et un réseau de parcelles expérimentales long terme est en cours d’implantation, pour mettre en relation les données du milieu naturel avec les caractéristiques des raisins et du vin. Des cartes conseil à 1/25 000 ont été établies : aléas de glissements de terrain, d’érosion, carte d’adaptation des porte-greffes ou d’aptitude à l’enherbement.

Par le biais du suivi de vignerons sur des sites pilotes, et des autodiagnostics de l’exploitation, réalisés dans le cadre de la viticulture raisonnée, on peut considérer les travaux de cartographie comme de réels supports de discussion et de progrès dans le choix des itinéraires culturaux. Reste désormais à valoriser les bases de données caractérisant le milieu naturel et les observations viticoles pour optimiser le choix de sites d’études représentatifs, extrapoler les résultats obtenus auprès des viticulteurs, et affiner une aide à la décision régionalisée.

In relation with natural environment, the vine-grower faces omnipresent natural variability, linked with year and pedoclimatic conditions. Since 10 years, in Champagne, the relation of the winegrower facing space has changed. Examples of collective actions with territorial purpose have increased: viticultural hydraulic management, network of advice viticultural groups, sectors with mating disruption, soil analysis by areas. Concurrently, at a technical level, studies on characterization of the natural factors began in 1990 in the Champagne vineyard: a network of weather stations was installed, soils were mapped, and longtime experimental network of plots is established, to study the relation between natural factors, vine and wine.

Based on these data, advice maps at the scale of 1/25 000 were established. It results from the following up of vine-growers that they consider cartographic studies as real tools to discuss and to make their vine-growing practices progress. The valorization of the data base, coming from the characterization of natural factors and viticultural observations remains, to better choice where to put experimental plots, and to help the vine-growers in their local choices.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

L. PANIGAI, A-F. DOLÉDEC, F. LANGELLIER, D. MONCOMBLE

Comité Interprofessionnel du Vin de Champagne (CIVC)
5 rue Henri Martin, 51200 EPERNAY (France)

Keywords

vignoble champenois, terroir, gestion collective, cartographie
Champagne vineyard, terroir, collective actions, mapping

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Extreme canopy management for vineyard adaptation to climate change: is it a good idea?

Climate change constitutes an enormous challenge for humankind and for all human activities, viticulture not being an exception. Long-term strategic changes are probably needed the most, but growers also need to deal with short-term changes: summers that are getting progressively warmer, earlier harvest dates and higher pH in musts and wines. In the last 10-15 years, a relevant corpus of research is being developed worldwide in order to evaluate to which extent extreme canopy management operations, aimed at reducing leaf area and, thus, limiting the source to sink ratio, could be useful to delay ripening. Although extreme canopy management can result in relevant delays in harvest dates, longer term studies, as well as detailed analysis of their implications on carbohydrate reserves, bud fertility and future yield are desirable before these practices can be recommended.

Grapevine xylem embolism resistance spectrum reveals which varieties have a lower mortality risk in a future dry climate

Wine growing regions have recently faced intense and frequent droughts that have led to substantial economical losses, and the maintenance of grapevine productivity under warmer and drier climate will rely notably on planting drought-resistant cultivars. Given that plant growth and yield depend on water transport efficiency and maintenance of photosynthesis, thus on the preservation of the vascular system integrity during drought, a better understanding of drought-related hydraulic traits that have a significant impact on physiological processes is urgently needed. We have worked towards this end by assessing vulnerability to xylem embolism in 30 grapevine commercial varieties encompassing red and white Vitis vinifera varieties, hybrid varieties characterized by a polygenic resistance for powdery and downy mildew, and commonly used rootstocks. These analyses further allowed a global assessment of wine regions with respect to their varietal diversity and resulting vulnerability to stem embolism. Hybrid cultivars displayed the highest vulnerability to embolism, while rootstocks showed the greatest resistance. Significant variability also arose among Vitis vinifera varieties, with Ψ12 and Ψ50 values ranging from -0.4 to -2.7 MPa and from -1.8 to -3.4 MPa, respectively. Cabernet franc, Chardonnay and Ugni blanc featured among the most vulnerable varieties while Pinot noir, Merlot and Cabernet Sauvignon ranked among the most resistant. In consequence, wine regions bearing a significant proportion of vulnerable varieties, such as Poitou-Charentes, France and Marlborough, New Zealand, turned out to be at greater risk under drought. These results highlight that grapevine varieties may not respond equally to warmer and drier conditions, outlining the importance to consider hydraulic traits associated with plant drought tolerance into breeding programmes and modeling simulations of grapevine yield maintenance under severe drought. They finally represent a step forward to advise the wine industry about which varieties and regions would have the lowest risk of drought-induced mortality under climate change.

UNCOVERING THE ROLE OF BERRY MATURITY STAGE AND GRAPE GENOTYPE ON WINE CHARACTERISTICS: INSIGHTS FROM CHEMICAL CHARACTERISTICS AND VOLATILE COMPOUNDS ANALYSIS

In a climate change context and aiming for sustainable, high-quality Bordeaux wine production, this project examines the impact of grape maturity levels in various cultivars chosen for their adaptability, genetic diversity, and potential to enhance wine quality. The study explores the effects on wine compo-sition and quality through sensory and molecular methods. We studied eight 14-year-old Vitis vinifera cv. grape varieties from the same area (VITADAPT plots 1 and 5): Cabernet Franc, Cabernet Sauvignon, Carmenère, Castets, Cot, Merlot, Petit Verdot, and Touriga Nacional.

The role of terroir in tourism led amenity migration: contrasting effects in Tuscany and the Okanagan valley of British Columbia

Definitions of terroir elude consistent agreement. As defined geographical space the common denominators of its conceptualization include natural and cultural elements of life

Design of microbial consortia to improve the production of aromatic amino acid derived compounds during wine fermentation

Wine contains secondary metabolites derived from aromatic amino acids (AADC), which can determine quality, stability and bioactivity. Several yeast species, as well as some lactic acid bacteria (LAB), can contribute in the production of these aromatic compounds. Winemaking should be studied as a series of microbial interactions, that work as an interconnected network, and can determine the metabolic and analytical profiles of wine. The aim of this work was to select microorganisms (yeast and LAB) based on their potential to produce AADC compounds, such as tyrosol and hydroxytyrosol, and design a microbial consortium that could increase the production of these AADC compounds in wines.