Terroir 1996 banner
IVES 9 IVES Conference Series 9 Natural variability and vine-growers behaviour

Natural variability and vine-growers behaviour

Abstract

[English version below]

Le vigneron est confronté à une variabilité naturelle omniprésente, liée au millésime et aux facteurs pédoclimatiques. Depuis 10 ans, en Champagne, la relation qu’entretient le vigneron avec l’espace a évolué. Les exemples d’entreprises collectives à vocation territoriale se sont multipliés : gestion de l’hydraulique viticole, maillages de groupements de conseil viticole (Magister), sites en confusion sexuelle, réseau maturation, analyses de sols par secteur, … Parallèlement, au niveau technique, des travaux de caractérisation du milieu naturel ont été initiés début 1990 en Champagne. Un réseau de stations climatiques a été mis en place, des cartographies de sols ont été dressées, et un réseau de parcelles expérimentales long terme est en cours d’implantation, pour mettre en relation les données du milieu naturel avec les caractéristiques des raisins et du vin. Des cartes conseil à 1/25 000 ont été établies : aléas de glissements de terrain, d’érosion, carte d’adaptation des porte-greffes ou d’aptitude à l’enherbement.

Par le biais du suivi de vignerons sur des sites pilotes, et des autodiagnostics de l’exploitation, réalisés dans le cadre de la viticulture raisonnée, on peut considérer les travaux de cartographie comme de réels supports de discussion et de progrès dans le choix des itinéraires culturaux. Reste désormais à valoriser les bases de données caractérisant le milieu naturel et les observations viticoles pour optimiser le choix de sites d’études représentatifs, extrapoler les résultats obtenus auprès des viticulteurs, et affiner une aide à la décision régionalisée.

In relation with natural environment, the vine-grower faces omnipresent natural variability, linked with year and pedoclimatic conditions. Since 10 years, in Champagne, the relation of the winegrower facing space has changed. Examples of collective actions with territorial purpose have increased: viticultural hydraulic management, network of advice viticultural groups, sectors with mating disruption, soil analysis by areas. Concurrently, at a technical level, studies on characterization of the natural factors began in 1990 in the Champagne vineyard: a network of weather stations was installed, soils were mapped, and longtime experimental network of plots is established, to study the relation between natural factors, vine and wine.

Based on these data, advice maps at the scale of 1/25 000 were established. It results from the following up of vine-growers that they consider cartographic studies as real tools to discuss and to make their vine-growing practices progress. The valorization of the data base, coming from the characterization of natural factors and viticultural observations remains, to better choice where to put experimental plots, and to help the vine-growers in their local choices.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

L. PANIGAI, A-F. DOLÉDEC, F. LANGELLIER, D. MONCOMBLE

Comité Interprofessionnel du Vin de Champagne (CIVC)
5 rue Henri Martin, 51200 EPERNAY (France)

Keywords

vignoble champenois, terroir, gestion collective, cartographie
Champagne vineyard, terroir, collective actions, mapping

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

ABOUT THE ROLE PLAYED BY THE DIFFERENT POLYPHENOLS ON OXYGEN CONSUMPTION AND ON THE ACCUMULATION OF ACETALDEHYDE ANDSTRECKER ALDEHYDES DURING WINE OXIDATION

In a previous work1, it was suggested that the different contents in delphinidin and catechin of the grapes were determinant on the O2 consumption and Strecker aldehyde (SAs) accumulation rates. Higher delphinidin seemed to be related to a faster O2 consumption and a smaller SAs accumulation rate, and the opposite was observed regarding catechin. In the present paper, these observations were fully corroborated by adding synthetic delphinidin to a wine model containing polyphenolic fractions (PFs) extracted from garnacha and synthetic catechin to a wine model containing PF extracted from tempranillo: The delphinin-containing garnacha model consumed O₂ significantly faster and accumulated significantly smaller amounts of SAs than the original garnacha model, and the catechin-containing tempranillo model, consumed O2 significantly slower and accumulated significantly higher amounts of SAs than the original tempranillo model.

TCA – A status report on South African cork closures

Cork taint decreases the commercial value of wine as tainted wines are rejected by consumers. Although other compounds in wine and cork can also be responsible for causing a taint, 2,4,6-trichloroanisole (TCA) is regarded as the primary cause of cork taint. As cork taint is often used in marketing campaigns against natural cork closures,

Some applications come from a method to concentrate proteins

All techniques usually used to assay proteins was not reliable in vegetable extract due to interferences with the components included in extracts like polyphenols, tanins, pectines, aromatics compounds. Absorbance at 280nm, Kjeldhal assay, Biuret and Lowry methods, Acid Bicinchonique technique and Bradford assay give the results depending on the composition of extract, on the presence or not of detergent and on the raw material (Marchal, 1995). Another difficulty in these extracts for the quantification of proteins comes from the large amount of water included in vegetable and the low concentration of proteins. Thus in red wines, proteins are usually not taken into account due to their low concentration (typically below 10 mgL-1) and to the presence of anthocyanis and polyphenols.

Residual copper quantification on grapevine’s organs

Copper is listed among the active substances candidates for substitution (Regulation EU 2015/408). Yet still, because of the lack of valid alternatives, the European Commission recently confirmed its usage authorization by limiting the maximum amount to 28 Kg per hectare in 7 years, i.e. an average of 4 kg/year (Reg. EU 2018/1981).This restriction is due to copper accumulation in soils and surface waters both caused by a steady application, especially on perennial crops (Riepert et al., 2013). The aim of this work is to determine if treatments with reduced copper dosages are able to reach different grapevine’s organs, with particular focus on the core of bunches, and if these small amounts can ensure the respect of the legislative prescription, without compromising the phytosanitary conditions of the vineyards, thus grape yields.

Identifying wild Vitis riparia Michx clones as a source of rootstock to mitigate vigour and acclimation/deacclimation cycles of the scion

Grapevine rootstocks have traditionally been chosen in order to manage scion vigour, soil pests and soil conditions. Riparia Gloire de Montpellier (RGM) has been in use since the turn of the 19th century, over 100 years and still a remarkably stable source of phylloxera (Daktulosphaeria vitifoliae Fitch) resistance. The original source material was probably collected near the Missouri/Mississippi river confluence, a mid-continental but more southerly location in the United States. It has been hypothesized that more northerly selections of V. riparia Michx might improve both fall acclimation rate and depth of the scion, thus mitigating late fall frost and midwinter freeze damage.