Terroir 1996 banner
IVES 9 IVES Conference Series 9 Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Abstract

[English version below]

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents. Dans les conditions de cet essai, le comportement des feuilles à la véraison est relativement indépendant du millésime pour N, P,K et Ca mais fortement influencé par celui-ci pour Mg, Fe, Mn et Zn. Seul le phosphore présente une très bonne traçabilité des feuilles au vin sans relation nette avec les teneurs en phosphore assimilable du sol. Les teneurs en calcium échangeable et le pH du sol, liés à la nature (calcaire ou non) de la roche, ou bien aux apports d’amendements, expliquent la richesse relative en calcium des feuilles mais la traçabilité de cet élément ne se retrouve pas systématiquement dans les moûts et les vins. Les recherches conduites sur ce réseau ont montré que les facteurs chimiques du sol ne semblent pas jouer un rôle déterminant dans « l’effet terroir ».

To study the “terroir” effect, a network of experimental plots with Cabernet franc grafted onto S04 was followed between 1979 and 1990 in Loire Valley (A.O.C.: Saumur-Champigny,Chinon and Bourgueil), in France. Chemical analysis concerning N, P, K, Ca, Mg, Fe, Mn,and Zn elements were made on soils, leafs at véraison, musts over the ripening period and at the grape harvest, and on the wine, in 18 plots (corresponding to 12 Basic Terroir Units), on seven vintages. In our experiment conditions, the behavior of leafs at véraison was relatively independent to vintage for N, P, K and Ca but greatly influenced by it for Mg, Fe, Mn and Zn. Only phosphorus had shown a very good traçability from leaf to wine, without relation with assimilable phosphorus in soil. pH and Ca exchangeable contents in soil, due to rock natureand soil amendments, explain Ca contents in leaf but the traçability of this element did not continue up to must and wine. Results obtained with this trial showed that soil chemical factors seemed to not be predominant in the “terroir effect”.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Lydie HUCHE-THELIER* and R. MORLAT**

* UMR A_ 462 SAGAH (INRNINH/Univ. Angers), BP 57 – F 49071 Beaucouzé cedex
** UVV : Unité Vigne et Vin, INRA, BP 57- F 49071 Beaucouzé cedex

Keywords

vigne, N, P, K,Ca, Mg, traçabilité

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Étude de la variabilité des facteurs naturels du terroir viticole, à travers une gamme d’A.O.C. en Anjou (France)

Un programme de recherche concernant les facteurs naturels et humains des terroirs viticoles a été développé dans le vignoble A.O.C. de l’Anjou, sur une surface d’environ 30.000 Ha

Geographical indication “Brandy Italiano”: study on the influence of wood barrel toasting and natural seasoning on endogenous and wood-derived compounds of aged distillates

The European geographical indication (GI) Brandy Italiano is exclusively reserved to brandy obtained in Italy from the distillation of wine from grapes grown and vinified in the national territory [1].

Teasing apart terroir: the influence of management style on native yeast communities within Oregon wineries and vineyards

Newer sequencing technologies have allowed for the addition of microbes to the story of terroir. The same environmental factors that influence the phenotypic expression of a crop also shape the composition of the microbial communities found on that crop. For fermented goods, such as wine, that microbial community ultimately influences the organoleptic properties of the final product that is delivered to customers. Recent studies have begun to study the biogeography of wine-associated microbes within different growing regions, finding that communities are distinct across landscapes. Despite this new knowledge, there are still many questions about what factors drive these differences. Our goal was to quantify differences in yeast communities due to management style between seven pairs of conventional and biodynamic vineyards (14 in total) throughout Oregon, USA. We wanted to answer the following questions: 1) are yeast communities distinct between biodynamic vineyards and conventional vineyards? 2) are these differences consistent across a large geographic region? 3) can differences in yeast communities be tied to differences in metabolite profiles of the bottled wine? To collect our data we took soil, bark, leaf, and grape samples from within each vineyard from five different vines of pinot noir. We also collected must and a 10º brix sample from each winery. Using these samples, we performed 18S amplicon sequencing to identify the yeast present. We then used metabolomics to characterize the organoleptic compounds present in the bottled wine from the blocks the year that we sampled. We are actively in the process of analysing our data from this study.

Training rats to drink red wine: effects of different drinking approaches on drinking/feeding habits, weight gain and survival from myocardial infarction

The habit of regular, moderate wine consumption, particularly with meals, is associated with protective effects from coronary heart disease. Epidemiological studies looking at myocardial protection/recovery focus mainly on the effects of red wine due to its high content in antioxidants, especially polyphenols. In several previous studies, conducted in our laboratory, we have concentrated on the effects of moderate consumption of white wine, by experimental animals (rats), gaining a significant experience in technical and procedural challenges. The scientific literature, and our past experience, suggests that rats are resilient towards consumption of full bodied, barrique red wines.

Autochthonous non-Saccharomyces extra-cellular metabolism of tryptophan, tyrosine, and phenylalanine

Amino acids are crucial nitrogen sources in yeast metabolism, influencing both biomass production and fermentation rate. The breakdown byproducts of amino acids contribute to the aroma of the wine and wine’s health benefit compounds. This study focused on the yeast’s extracellular metabolic profile of tryptophan, tyrosine, and phenylalanine belonging to the group of aromatic amino acids in experimental Maraština wines. Alcoholic fermentations were conducted on sterile grape Maraština must using seven autochthonous non-Saccharomyces yeasts in sequential fermentation with commercial Saccharomyces cerevisiae.