Terroir 1996 banner
IVES 9 IVES Conference Series 9 Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Traçability of main mineral elements on the chain “soil-leaf-must-wine” in relation to “terroir” and vintage in Loire Valley(France)

Abstract

[English version below]

Dans le cadre de recherches sur la mise en évidence et le déterminisme d’un «effet terroir »un réseau de parcelles du cépage Cabernet Franc greffé sur S04, a été suivi de 1979 à 1990 en Val de Loire (A.O.C. Saumur-Champigny, Chinon et Bourgueil). Des analyses chimiques (N,P, K, Ca, Mg, Fe, Mn, Zn) ont été réalisées sur le sol, les feuilles au stade véraison, les moûts en cours de maturation et à la vendange et enfin sur le vin, pour 18 sites (répartis dans 12unités terroirs de base) et 7 millésimes différents. Dans les conditions de cet essai, le comportement des feuilles à la véraison est relativement indépendant du millésime pour N, P,K et Ca mais fortement influencé par celui-ci pour Mg, Fe, Mn et Zn. Seul le phosphore présente une très bonne traçabilité des feuilles au vin sans relation nette avec les teneurs en phosphore assimilable du sol. Les teneurs en calcium échangeable et le pH du sol, liés à la nature (calcaire ou non) de la roche, ou bien aux apports d’amendements, expliquent la richesse relative en calcium des feuilles mais la traçabilité de cet élément ne se retrouve pas systématiquement dans les moûts et les vins. Les recherches conduites sur ce réseau ont montré que les facteurs chimiques du sol ne semblent pas jouer un rôle déterminant dans « l’effet terroir ».

To study the “terroir” effect, a network of experimental plots with Cabernet franc grafted onto S04 was followed between 1979 and 1990 in Loire Valley (A.O.C.: Saumur-Champigny,Chinon and Bourgueil), in France. Chemical analysis concerning N, P, K, Ca, Mg, Fe, Mn,and Zn elements were made on soils, leafs at véraison, musts over the ripening period and at the grape harvest, and on the wine, in 18 plots (corresponding to 12 Basic Terroir Units), on seven vintages. In our experiment conditions, the behavior of leafs at véraison was relatively independent to vintage for N, P, K and Ca but greatly influenced by it for Mg, Fe, Mn and Zn. Only phosphorus had shown a very good traçability from leaf to wine, without relation with assimilable phosphorus in soil. pH and Ca exchangeable contents in soil, due to rock natureand soil amendments, explain Ca contents in leaf but the traçability of this element did not continue up to must and wine. Results obtained with this trial showed that soil chemical factors seemed to not be predominant in the “terroir effect”.

DOI:

Publication date: February 15, 2022

Issue: Terroir 2002

Type: Article

Authors

Lydie HUCHE-THELIER* and R. MORLAT**

* UMR A_ 462 SAGAH (INRNINH/Univ. Angers), BP 57 – F 49071 Beaucouzé cedex
** UVV : Unité Vigne et Vin, INRA, BP 57- F 49071 Beaucouzé cedex

Keywords

vigne, N, P, K,Ca, Mg, traçabilité

Tags

IVES Conference Series | Terroir 2002

Citation

Related articles…

Cork and Wine: interactions and newly formed compounds

When the cork is in direct contact with an alcoholic solution such as in case of a bottle wine, some cork components can migrate into the wine.

The impact of acetaldehyde on phenolic evolution of a free-SO2 red wine

Some wine producers, in good years, can produce free-SO2 red wines and decide to add the minimum amount of sulphur dioxide only at bottling. To manage this addition

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Can minimal pruning be a strategy to adapt grape ripening to global warming?

Berry maturation in warm areas takes place very early, when temperatures are still high and favorable for carbohydrate synthesis and accumulation in the berries, but not as favorable for maintaining high titratable acidity or low pH, or for increasing berry polyphenol content. Different canopy management techniques have been proven to delay berry maturation at the expense of yield (severe canopy trimming, late spring pruning to induce sprouting of dormant buds, etc.). Minimal pruning delays berry ripening by highly increasing yield and by reducing the leaf area to fruit ratio.

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.