Terroir 1996 banner
IVES 9 IVES Conference Series 9 Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

Abstract

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al., 1988 b; DIVAR RODRÍGUEZ et al. 1988; DÍAZ DE NEIRA et al., 1992). Por otro lado, distintos modelos fisiográficos —dependientes de procesos estructurales, erosivos y/o sedimentarios- (RUIZ LÓPEZ, 1988 a, b, c), contribuyen también en el desarrollo de diferentes Grupos de Suelos (Leptosols, Regosols, Cambisols, Luvisols, Vertisols) (Paneque et al., 1998; Paneque et al., 1999 a; Fernández Mancilla et al., 1999) con distintas aptitudes vitícolas (Paneque et al., 1999 b). La influencia antrópica, ejercida desde muy antiguo, ha modificado la cubierta de suelos haciéndola depender estrechamente del substrato geológico y de su disposición en el marco ambiental (PÉREZ CAMACHO et al., 1998). Por esta razón, los autores estudian las características de interés vitícola de los terrenos de la D.O. Montilla-Moriles ocupados por el viñedo en orden a la zonificación de la misma.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

PANEQUE, G.; ESPINO, C.; PANEQUE, P., OSTA, P.

Departamento de Cristalografía, Mineralogía y Química Agrícola
Facultad de Química. Universidad de Sevilla
Campus de Reina Mercedes s/n. 41071 Sevilla

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Future projections for chilling and heat forcing for European vineyards

Aims: The aims of this study were: (1) to compute recent-past thermal conditions over European vineyards, using state-of-the art bioclimatic indices: chilling portions and growing degree hours; (2) to compute future changes of these thermal conditions using a large ensemble of high-resolution climate models.

Characterization and modelling of water flow on vineyard soil. Effect of compaction and grass cover

In the Burgundy vineyard, frequent tractor traffic and management of inter-rows alternating grass cover and chemical weed-control lead to structural soil contrast between row and inter-row. The aim of this study was to characterize and model water flow in relation with topsoil structure modifications induced by these practices. Void ratio of the different soil volumes were determined using bulk density measurements.

Red wine oxidation study by accelerating ageing tests and electrochemical method

Red wines can undergo many undesirable changes during the winemaking process and storage, particularly oxidative degradation due to numerous atmospheric oxygen intakes. This spoilage can impact organoleptic properties and color stabilization but this impact depends on the wine composition. Phenolic compounds constitute primary targets to oxidation reactions

Soil, vine, climate change – what is observed – what is expected

To evaluate the current and future impact of climate change on Viticulture requires an integrated view on a complex interacting system within the soil-plant-atmospheric continuum under continuous change. Aside of the globally observed increase in temperature in basically all viticulture regions for at least four decades, we observe several clear trends at the regional level in the ratio of precipitation to potential evapotranspiration. Additionally the recently published 6th assessment report of the IPCC (The physical science basis) shows case-dependent further expected shifts in climate patterns which will have substantial impacts on the way we will conduct viticulture in the decades to come.
Looking beyond climate developments, we observe rising temperatures in the upper soil layers which will have an impact on the distribution of microbial populations, the decay rate of organic matter or the storage capacity for carbon, thus affecting the emission of greenhouse gases (GHGs) and the viscosity of water in the soil-plant pathway, altering the transport of water. If the upper soil layers dry out faster due to less rainfall and/or increased evapotranspiration driven by higher temperatures, the spectral reflection properties of bare soil change and the transport of latent heat into the fruiting zone is increased putting a higher temperature load on the fruit. Interactions between micro-organisms in the rhizosphere and the grapevine root system are poorly understood but respond to environmental factors (such as increased soil temperatures) and the plant material (rootstock for instance), respectively the cultivation system (for example bio-organic versus conventional). This adds to an extremely complex system to manage in terms of increased resilience, adaptation to and even mitigation of climate change. Nevertheless, taken as a whole, effects on the individual expressions of wines with a given origin, seem highly likely to become more apparent.

Enhancing grapevine transformation and regeneration: A novel approach using developmental regulators and BeYDV-mediated expression

Grapevine (Vitis vinifera L.) is a challenging plant species to transform and regenerate due to its complex genome and biological characteristics. This limits the development of cisgenic and gene-edited varieties. One hurdle is selecting the best starting tissue for the transformation process, much like isolating suitable tissue for protoplasts. One promising method involves delivering crispr/cas components to protoplasts isolated from embryogenic calli, which are then induced to regenerate.