Terroir 1996 banner
IVES 9 IVES Conference Series 9 Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

Abstract

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al., 1988 b; DIVAR RODRÍGUEZ et al. 1988; DÍAZ DE NEIRA et al., 1992). Por otro lado, distintos modelos fisiográficos —dependientes de procesos estructurales, erosivos y/o sedimentarios- (RUIZ LÓPEZ, 1988 a, b, c), contribuyen también en el desarrollo de diferentes Grupos de Suelos (Leptosols, Regosols, Cambisols, Luvisols, Vertisols) (Paneque et al., 1998; Paneque et al., 1999 a; Fernández Mancilla et al., 1999) con distintas aptitudes vitícolas (Paneque et al., 1999 b). La influencia antrópica, ejercida desde muy antiguo, ha modificado la cubierta de suelos haciéndola depender estrechamente del substrato geológico y de su disposición en el marco ambiental (PÉREZ CAMACHO et al., 1998). Por esta razón, los autores estudian las características de interés vitícola de los terrenos de la D.O. Montilla-Moriles ocupados por el viñedo en orden a la zonificación de la misma.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

PANEQUE, G.; ESPINO, C.; PANEQUE, P., OSTA, P.

Departamento de Cristalografía, Mineralogía y Química Agrícola
Facultad de Química. Universidad de Sevilla
Campus de Reina Mercedes s/n. 41071 Sevilla

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

´Vinho Verde´ wines production from differential fermentation: the role of musts sulphitation as a preservation strategy to keep the musts character

High-volume mass-market white wines production method by means of harvest-deferred fermentation from desulphited musts allows an efficient business management by avoiding the seasonality in wine sector.

Interaction Between Armenian Clay-based Ceramic and Model Wine

Clay-based ceramic vessels (jars, pyhtoi, etc.) for wine fermentation and aging processes have been used in several cultures for millennia. This know-how still in practice in several countries of the Armenian highland is gaining worldwide in curiosity, popularity, and interest. Ceramic pots are famous among traditional winemakers for their benefits such as temperature regulation, natural cooling system, favorable oxygen exchange, and impact on pH, which are different from those of stainless steel, wood barrels, or concrete.

Glutathione content evolution during spontaneous alcoholic fermentations of Sangiovese grapes

Glutathione is a tripeptide (γ-Glu-Cys-Gly), which can occur in grapes, in must and in wine prevalently in the reduced form as well as in the oxidized form as glutathione disulfide. The importance of the reduced form of glutathione lies in its antioxidant activity. In must, it limits browning by reducing o-quinones produced by polyphenol oxidase activity on hydroxycinnamic acids; in wine, it exerts a protective effect on various aromatic compounds. Glutathione concentration in wine is lower than in grape juice and variable as it depends on several factors, ranging from the native content of grapes to winemaking technique.

Scalable asymptomatic grapevine leafroll virus complex-3 detection through integrated airborne imaging spectroscopy, autonomous robotics, and cloud computing

The past three decades of terrestrial remote sensing research have delivered unprecedented insights into our fundamental ability to detect, quantify, and differentiate plant disease (Gold 2021). However, much of our fundamental knowledge in this domain has come from studies in non-agricultural systems and until recently, most agricultural studies, when extant, have focused on tree crops where canopy closure and large plot and plant size facilitate stress detection at low spatial resolution. Recent engineering innovations and advancements in constellation architecture design have refined the accuracy and scalability of airborne and spaceborne sensing platforms, enabling us to monitor diverse specialty crops, including grapevine, planted in smaller, spatially varied fields.

INVESTIGATION OF FILM COATINGS AS A PROTECTIVE LAYER IN REDUCING THE ABSORPTION OF SMOKE PHENOLS INTO PINOT NOIR GRAPES

Wine grapes exposed to wildfire smoke have resulted in wines with burnt and ashy sensory characteristics¹, that are undesirable qualities in wine. In extreme wildfire events, this can lead to total loss of grape crop. Currently there are no effective solutions in the market to prevent the uptake of smoke compounds into grapes. In this study, previously developed innovative film coatings were tested to analyze their effectiveness in reducing smoke phenol absorption². Four different cellulose nanofiber-based film types were investigated.