Terroir 1996 banner
IVES 9 IVES Conference Series 9 Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

Reconocimiento geoedafológico para la zonificación vitivinícola de la D.O. Montilla-Moriles

Abstract

En la región vitivinícola con D.O. Montilla-Moriles (Córdoba) la variabilidad geologico-petrográfica de los terrenos es grande (ROLDÁN GARCÍA y DIVAR RODRÍGUEZ, 1988 a; roldán garcía et al., 1988 b; DIVAR RODRÍGUEZ et al. 1988; DÍAZ DE NEIRA et al., 1992). Por otro lado, distintos modelos fisiográficos —dependientes de procesos estructurales, erosivos y/o sedimentarios- (RUIZ LÓPEZ, 1988 a, b, c), contribuyen también en el desarrollo de diferentes Grupos de Suelos (Leptosols, Regosols, Cambisols, Luvisols, Vertisols) (Paneque et al., 1998; Paneque et al., 1999 a; Fernández Mancilla et al., 1999) con distintas aptitudes vitícolas (Paneque et al., 1999 b). La influencia antrópica, ejercida desde muy antiguo, ha modificado la cubierta de suelos haciéndola depender estrechamente del substrato geológico y de su disposición en el marco ambiental (PÉREZ CAMACHO et al., 1998). Por esta razón, los autores estudian las características de interés vitícola de los terrenos de la D.O. Montilla-Moriles ocupados por el viñedo en orden a la zonificación de la misma.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

PANEQUE, G.; ESPINO, C.; PANEQUE, P., OSTA, P.

Departamento de Cristalografía, Mineralogía y Química Agrícola
Facultad de Química. Universidad de Sevilla
Campus de Reina Mercedes s/n. 41071 Sevilla

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Exploring the gene regulatory networks of WRKY family in grapevine (Vitis vinifera  L.) using DAP-Seq

The recent development of regulatory genomics has raised increasing interest in plant research since transcriptional regulation of genes plays a pivotal role in many biological processes. By shedding light on the target genes of the various transcription factors (TFs), it is therefore possible to infer the influence they exert on the different molecular mechanisms. In this regard, the attention was focused on WRKYs, a family of TFs almost exclusively found in plant species. In grapevine, WRKYs are involved in several biological processes, playing a key role in berry development, hormonal balance and signalling, biotic and abiotic stresses responses, and secondary metabolites biosynthesis.

A comprehensive ecological study of grapevine sensitivity to temperature; how terroir will shift under climate change

Fossil fuel combustion continues to drive increases in atmospheric carbon dioxide, consequently elevating the global annual mean temperature and specifically increasing the growing season temperatures in many of the world’s most important wine growing regions (IPCC 2014; Jones et al 2005). Grapes are sensitive to changes in growing season temperatures, and past models have shown a direct link between warming temperatures and earlier harvest dates (Cook and Wolkovich 2016). Globally, there have been shifts of 1-2 weeks for wine growing regions (Wolkovich et al 2017 and references within). The phenological shifts resulting from growing season temperature increases are documented internationally, and models predicting phenology using temperature are becoming more precise (Parker et al 2011).

Geochemistry of Vrbničko Polje (Croatia) winegrowing site

A multi-element pedo-geochemical survey was carried out in Vrbničko polje vineyards on the Krk Island, Croatia. This Mediterranean winegrowing site is famous by Žlahtina wine production.

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

CONTRIBUTION OF VOLATILE THIOLS TO THE AROMA OF RIESLING WINES FROM THREE REGIONS IN GERMANY AND FRANCE (RHEINGAU, MOSEL, AND ALSACE)

Riesling wines are appreciated for their diverse aromas, ranging from the fruity fresh characters in young vintages to the fragrant empyreumatic notes developed with aging. Wine tasters often refer to Riesling wines as prime examples showcasing terroir, with their typical aroma profiles reflecting the geographical provenance of the wine. However, the molecular basis of the distinctive aromas of these varietal wines from major Riesling producing regions in Europe have not been fully elucidated. In this study, new lights were shed on the chemical characterization and the sensory contribution of volatile thiols to Riesling wines from Rheingau, Mosel, and Alsace. First, Riesling wines (n = 46) from the three regions were collected and assessed for their aroma typicality by an expert panel.