GiESCO 2019 banner
IVES 9 IVES Conference Series 9 GiESCO 9 NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

NIR spectroscopy as a contacless rapid tool to estimate the amino acids profile in intact grape berries

Abstract

Context and purpose of the study – Nitrogen composition of grape berries plays a key role in determining wine quality, affecting the development of alcoholic fermentation and the formation of volatile compounds. Grape nitrogen composition is influenced by several factors such as viticultural practices, soil management, timing or rate of fertilization and use of rootstock, among others.In this study a proximal, non-destructive tool based on NIR spectroscopy is presented to track the accumulation of a wide range of amino acids in intact grape berries during the ripening process.

Material and methods – Clusters of grapevines of Vitis vinifera L. cv. Tempranillo were collected in a commercial vineyard located in Tudelilla, La Rioja, Spain (Lat. 42°18′ 18.26″, Long. -2°7′ 14.15″, Alt. 515 m) on five different dates from veraison to harvest in 2016 season. Contactless (at 25 cm from berries) spectral measurements from intact grape berries were acquired using a NIR spectrometer working in the 1100 – 2100 nm spectral range under laboratory conditions.A total of 19 individual amino acids in 120 grape clusters were quantified by HPLC, which was used as the reference method for the validation of the spectral tool. Principal component analysis (PCA) and Modified partial least squares (MPLS) regressions were used to explore the data structure and for the prediction of the amino acids profile in grape berries, by building calibration and validation models.

Results – A wide variability of all studied parameters was found during the ripening process with amino acid content ranging from 0.07 mg N/l (Glycine) to 534 mg N/l (Arginine). On average, Arginine was the most abundant amino acid (46.64 %), followed by Glutamine (14.70 %) and Proline (6.76 %). The best calibration and cross-validation models were built for Arginine, Cysteine and Proline with correlation coefficients values of 0.80, 0.77 and 0.75, while the standard errors of cross validation (SECV) were 43.04 mg N/l, 0.40 mg N/l and 5.87 mg N/l, respectively. In terms of the Free Amino Nitrogen content (FAN) the values of 0.71 and 104.85 mg N/l were gathered for the correlation coefficient of cross validation and SECV, respectively. The potential of NIR technology to fingerprinting the amino acid content in intact berries has been investigated. This technology could be used to select or classify grape berries during ripening in the vineyard, or at harvest time at the reception of the grapes in the production line (winery). This could be very useful to adapt the enological fate or grape berries to different wine qualities or styles, as well as to adopt different viticultural (thinning, selective harvesting) or enological decisions. Nevertheless, further examination of the influence of more varieties, seasons, and origins should be conducted with the aim of developing more robust, global, and predictive models.

DOI:

Publication date: September 28, 2023

Issue: GiESCO 2019

Type: Poster

Authors

Juan FERNÁNDEZ-NOVALES1, Teresa GARDE-CERDÁN1, Javier TARDÁGUILA1, Sandra MARÍN-SAN ROMÁN1, Eva P. PÉREZ-ÁLVAREZ1, Eugenio MOREDA1, Maria-Paz DIAGO1*

Instituto de Ciencias de la Vid y del Vino (Universidad de La Rioja, CSIC, Gobierno de La Rioja) Finca La Grajera, Ctra. de Burgos Km 6. 26007 Logroño, La Rioja, Spain

Contact the author

Keywords

grape ripening, non-destructive evaluation of berries, nitrogen composition, spectral techniques

Tags

GiESCO | GiESCO 2019 | IVES Conference Series

Citation

Related articles…

The interaction between wine polyphenolic classes and poly-L-proline is impacted by oxygen

Oxygen plays a key role in the evolution of wine chemistry, within the non-volatile matrix. Polyphenol composition and structure, as well as the process of tannin polymerisation are directly impacted by oxidation, and this can occur during both fermentation and ageing.

VINIoT: Precision viticulture service for SMEs based on IoT sensors network

The main innovation in the VINIoT service is the joint use of two technologies that are currently used separately: vineyard monitoring using multispectral imaging and deployed terrain sensors. One part of the system is based on the development of artificial intelligence algorithms that are feed on the images of the multispectral camera and IoT sensors, high-level information on water stress, grape ripening status and the presence of diseases. In order to obtain algorithms to determine the state of ripening of the grapes and avoid losing information due to the diversity of the grape berries, it was decided to work along the first year 2020 at berry scale in the laboratory, during the second year at the cluster scale and on the last year at plot scale. Different varieties of white and red grapes were used; in the case of Galicia we worked with the white grape variety Treixadura and the red variety Mencía. During the 2020 and 2021 campaigns, multispectral images were taken in the visible and infrared range of: 1) sets of 100 grapes classifying them by means of densimetric baths, 2) individual bunches. The images taken with the laboratory analysis of the ripening stage were correlated. Technological maturity, pH, probable degree, malic acid content, tartaric acid content and parameters for assessing phenolic maturity, IPT, anthocyanin content were determined. It has been calculated for each single image the mean value of each spectral band (only taking into account the pixels of interest) and a correlation study of these values with laboratory data has been carried out. These studies are still provisional and it will be necessary to continue with them, jointly with the training of the machine learning algorithms. Processed data will allow to determine the sensitivity of the multispectral images and select bands of interest in maturation.

A.O.C. taureau de Camargue

A.O.C. réservée aux viandes fraîches de bovins mâles ou femelles, nés, élevés et abattus dans une aire géographique définie (voir carte)

Impact of chitosan treatment on the physico-chemical features of a sangiovese red wine

Chitosan is gaining interest in red winemaking thanks to its ability to inhibit the development of Brettanomyces spp. yeast, or other undesired wine microbial threats. However, little is known about potential side-effects of its addition on the physico-chemical parameters of red wines.

The grapevine QTLome is ripe: QTL survey, databasing, and first applications

Overarching surveys of QTL (Quantitative Trait Loci) studies in both model plants and staple crops have facilitated the access to information and boosted the impact of existing data on plant improvement activities. Today, the grapevine community is ready to take up the challenge of making the wealth of QTL information F.A.I.R.. To ensure that all valuable published data can be used more effectively, the myriad of identified QTLs have to be captured, standardised and stored in a dedicated public database.
As an outcome of the GRAPEDIA initiative, QTL-dedicated experts from around the world have gathered to compile the grapevine QTLome: the complete information (e.g., map positions, associated phenotypes) describing all experimentally supported QTLs for a specific trait.