Terroir 1996 banner
IVES 9 IVES Conference Series 9 A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

Abstract

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data, reliable spatialization procedures need to be developed, mainly based on topography.
For a hilly area of about 7000 ha (including 5000 ha of the Registered Origin Denomination “Collio”) in Friuli-Venezia Giulia region, North-Eastern Italy, information was integrated from meteo stations, soil survey, geology and topography (coded in a Digital Elevation Model), using a GIS (Idrisi 2.0), a deterministic model of the cropping system (CSS, Cropping System Simulator) and a stochastic weather generator (Climak). CSS and Climak were developed at the University of Udine.
A procedure was developed for the spatialization of soil and climate parameters, starting from point data and using ancillary information mainly about topography. The area was then divided in homogeneous units (given by a unique combination of soil and climate conditions) on which the CSS model was run, obtaining data on potential yield for each unit and yield shortage due to possible water stress.
A field survey was carried out, focusing on the relationship between grape characteristics (yield, sugar concentration at harvest) and soil, climate, topography, cultivation management techniques and crop features.
The evaluation of land suitability for grapevine cultivation was based on 1) expected quality of production, as a function of aspect, Huglin’s heliothermal index and yield reduction in non irrigated vineyards due to water stress (the most limiting factor); 2) potential suitability for grapevine, depending on quality and yield productivity in non irrigated vines; 3) actual suitability for grapevine, obtained combining potential vocation and ease of cultivation (as a function of slope).
A multi-criteria procedure allowed to define 4 classes of land suitability for grapevine cultivation, described as ‘not suitable’, ‘poorly suitable because of high transformation costs’, ‘suitable’ and ‘very suitable’.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

D. Franz, F. Danuso, R. Giovanardi and E. Peterlunger

Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Università di Udine
via delle Scienze, 208 —33100 Udine, Italy

Contact the authors

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

The importance of soil and geology in tasting terroir; a case history from the Willamette valley, Oregon

Wines differ from each other based on seven different factors: the type of grape; the bedrock geology and resulting soils; the climate; the soil hydrology; physiography of the site; the winemaker and the vineyard management techniques. The first five of these factors make up what the French call terroir, “the taste of the place”.

What are the optimal ranges and thresholds for berry solar radiation for flavonoid biosynthesis?

In wine grape production, canopy management practices are applied to control the source-sink balance and improve the cluster microclimate to enhance berry composition. The aim of this study was to identify the optimal ranges of berry solar radiation exposure (exposure) for upregulation of flavonoid biosynthesis and thresholds for their degradation, to evaluate how canopy management practices such as leaf removal, shoot thinning, and a combination of both affect the grapevine (Vitis vinifera L. cv. Cabernet Sauvignon) yield components, berry composition, and flavonoid profile under context of climate change. First experiment assessed changes in the grape flavonoid content driven by four degrees of exposure. In the second experiment, individual grape berries subjected to different exposures were collected from two cultivars (Cabernet Sauvignon and Petit Verdot). The third experiment consisted of an experiment with three canopy management treatments (i) LR (removal of 5 to 6 basal leaves), (ii) ST (thinned to 24 shoots per vine), and (iii) LRST (a combination of LR and ST) and an untreated control (UNT). Berry composition, flavonoid content and profiles, and 3-isobutyl 2-methoxypyrazine were monitored during berry ripening. Although increasing canopy porosity through canopy management practices can be helpful for other purposes, this may not be the case of flavonoid compounds when a certain proportion of kaempferol was achieved. Our results revealed different sensitivities to degradation within the flavonoid groups, flavonols being the only monitored group that was upregulated by solar radiation. Within different canopy management practices, the main effects were due to the ST. Under environmental conditions given in this trial, ST and LRST hastened fruit maturity; however, a clear improvement of the flavonoid compounds (i.e., greater anthocyanin) was not observed at harvest. Methoxypyrazine berry content decreased with canopy management practices studied. Although some berry traits were improved (i.e. 2.5° Brix increase in berry total soluble solids) due to canopy management practices (ST), this resulted in a four-fold increase in labor operations cost, two-fold decrease in yield with a 10-fold increase in anthocyanin production cost per hectare that should be assessed together as the climate continues to get hot.

IMPACT OF METSCHNIKOWIA PULCHERRIMA DURING FERMENTATION ON AROMATIC PROFILE OF VIDAL BLANC ICEWINE

Non-Saccharomyces yeasts not only increase microbial diversity during wine fermentation, but also have a positive effect on improving wine aroma. Among these non-Saccharomyces yeast species, Metschnikowia pulcherrima is often studied and used in winemaking in recent years, but its application in icewine has been rarely reported. In this study, indigenous M. pulcherrima strains and Saccharomyces cerevisiae strains (commercial and indigenous strains) were sequentially inoculated for icewine fermentations; meanwhile, pure S. cerevisiae fermentations were used as the control; indigenous strains used above were screened from spontaneous fermentations of Vidal blanc icewine.

A zoning study of the viticultural territory of a cooperative winery in Valpolicella

The Valpolicella hilly area, north of Verona, is highly vocated for viticulture but its vineyards are sometimes characterized by very different soil and microclimate conditions which can greatly affect their oenological potential.

REMEDIATION OF SMOKE TAINTED WINE USING MOLECULARLY IMPRINTED POLYMERS

In recent years, vineyards in Australia, the US, Canada, Chile, South Africa and Europe have been exposed to smoke from wildfires. Wines made from smoke-affected grapes often exhibit unpleasant smoky, ashy characters, attributed to the presence of smoke-derived volatile compounds, including volatile phenols (which occur in free and glycosylated forms). Various strategies for remediation of smoke tainted wine have been evaluated. The most effective strategies involve the removal of smoke taint compounds via the addition of adsorbent materials such as activated carbon, which can either be added directly or used in combination with nanofiltration. However, these treatments often simultaneously remove wine constituents responsible for desirable aroma, flavour and colour attributes.