Terroir 1996 banner
IVES 9 IVES Conference Series 9 A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

A procedure for the zoning of grapevine in a hilly area (Collio, North-Eastern Italy) using simulation models and GIS

Abstract

The zoning of grapevine in a hilly area should consider the variability of the environmental characteristics due to topography. Since soil and climate data are usually available as point data, reliable spatialization procedures need to be developed, mainly based on topography.
For a hilly area of about 7000 ha (including 5000 ha of the Registered Origin Denomination “Collio”) in Friuli-Venezia Giulia region, North-Eastern Italy, information was integrated from meteo stations, soil survey, geology and topography (coded in a Digital Elevation Model), using a GIS (Idrisi 2.0), a deterministic model of the cropping system (CSS, Cropping System Simulator) and a stochastic weather generator (Climak). CSS and Climak were developed at the University of Udine.
A procedure was developed for the spatialization of soil and climate parameters, starting from point data and using ancillary information mainly about topography. The area was then divided in homogeneous units (given by a unique combination of soil and climate conditions) on which the CSS model was run, obtaining data on potential yield for each unit and yield shortage due to possible water stress.
A field survey was carried out, focusing on the relationship between grape characteristics (yield, sugar concentration at harvest) and soil, climate, topography, cultivation management techniques and crop features.
The evaluation of land suitability for grapevine cultivation was based on 1) expected quality of production, as a function of aspect, Huglin’s heliothermal index and yield reduction in non irrigated vineyards due to water stress (the most limiting factor); 2) potential suitability for grapevine, depending on quality and yield productivity in non irrigated vines; 3) actual suitability for grapevine, obtained combining potential vocation and ease of cultivation (as a function of slope).
A multi-criteria procedure allowed to define 4 classes of land suitability for grapevine cultivation, described as ‘not suitable’, ‘poorly suitable because of high transformation costs’, ‘suitable’ and ‘very suitable’.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

D. Franz, F. Danuso, R. Giovanardi and E. Peterlunger

Dipartimento di Produzione Vegetale e Tecnologie Agrarie, Università di Udine
via delle Scienze, 208 —33100 Udine, Italy

Contact the authors

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

The moment of preharvest elicitor application influence its final effect on winegrapes quality

Phenolic compounds are secondary metabolites of grapes. Plants produce a wide variety of this type of metabolites through diverse biosynthesis pathways and their production is sometimes a response to external stimuli, either environmental or biotic stresses. Some of them may act as chemical defenses against pathogens or herbivores and their synthesis is increased when the attack exists. However, it is remarkable that the synthesis of these interesting compounds can be activated even when the stimulus is not present, with the use of elicitors. These are substances that when applied exogenously trigger the biosynthetic pathways conducting to the synthesis of these defense compounds.

A comparative analysis of regions worldwide with Pinot noir

This study examines the growing season climates of selected wine regions worldwide that have significant areas under Pinot noir.

Enhancing grape traceability from grower to consumer through GS1 Standards: A case study of the Australian table grape industry

The traceability of agricultural products, including grapes, is essential for ensuring food safety, quality control, and supply chain transparency. This paper investigates the implementation of GS1 standards in enhancing the traceability of grapes from grower to consumer.

Influence of the vineyard’s surrounding vegetation on the phenolic potential of Vitis vinifera L. cv Tempranillo grapes

Wine industry has to develop new strategies to reduce the negative impact of global climate change in wine quality while trying to mitigate its own contribution to this climate change. The term “ecosystem services”, whose use has been recently increasing, refers to the benefits that human beings can obtain from the interactions between the different living beings that coexist in an environment or system. The management of biodiversity in the vineyard has a positive impact on this crop. It has recently been reported that practices such as plant cover can reduce the occurrence of pests, increase pollination of the vine, improve plant performance1 and affect the phenolic content of grapes.2

Waste-free production of non-alcoholic wine as a sustainable technology

The growing demand for non-alcoholic wines, along with issues related to waste disposal and environmental pollution amid military conflicts, natural disasters, and industrial emissions, necessitates the implementation of environmentally sustainable technologies in the winemaking industry.