IVAS 2022 banner
IVES 9 IVES Conference Series 9 IVAS 9 IVAS 2022 9 Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Exploring and unravelling the complex toasted oak wood (Q. sp.) volatilome using GCxGC-TOFMS technique

Abstract

For coopers, toasting process is considered as a crucial step in barrel production where oak wood develops several specific aromatic nuances released to the wine during its maturation. Toasting is applying varying degrees of heat to a barrel over a specific amount of time. Today it is well known that as the temperature increases, thermal degradation of oak wood structure produces a huge range of chemical compounds. Indeed, many works were conducted to identify key aroma volatile compounds (e.g., whisky-lactone, furfural, maltol, eugenol, guaiacol, vanillin) using the traditional gas chromatography coupled with olfactometry and mass spectrometry (GC-O-MS).

Inspired by recent untargeted approaches in food “omics”, this work aims at expanding our knowledge on oak wood volatile composition by bi-dimensional comprehensive gas chromatography-time of flight mass spectrometry (GCxGC-TOFMS, BT4D, Leco).

In a first experiment, five toasting levels were selected and applied to Q. sessilis oak wood samples (control, 160 °C, 180 °C, 200 °C and 220 °C, 30 min, n=3). Organic extracts were prepared (dichloromethane, 50 g/L) and analysed by GCxGC-TOFMS on conventional column combination nonpolar/midpolar (DB-5ms/Rxi-17Sil). The separation was followed by a non-targeted approach for data processing. The resulting mass spectra (TIC) were de convoluted (ChromaTOF software) and compared to spectra from a database for tentative peak identification. It was necessary to restrict the number of processed peaks by applying some “filters” such as signal to noise (S/N > 50), linear retention index (LRI ± 30), mass spectra similarity (> 750) and repeatability level. Supervised multivariate and univariate statistical approaches were used to identify potential markers of toasting intensity. Thanks to R script, reproducible peaks number was reduced from about 15000 to 568. By comparing observed retention indices with those found in the literature, 77 of the identifications have been confirmed and associated with an increase in toasting intensity. Some of them were sensory active and well known in oak wood, such as guaiacol, creosol and isoeugenol. Others were identified for the first time in toasted oak wood such as 2-methylbenzofurane (burnt) and 2-hydroxy-2-cyclopenten-1-one (caramel).Additional results were also discussed on the capability of GCxGC-TOFMS to identify oak wood botanic origins (Q. robur, Q. alba

DOI:

Publication date: June 23, 2022

Issue: IVAS 2022

Type: Article

Authors

Courregelongue Marie1,², Albertin Warren1,³, Prida Andrei2 and Pons Alexandre1,²

¹UMR ŒNOLOGIE (OENO), ISVV, UMR 1366, Université de Bordeaux, INRAE, Bordeaux INP
²Tonnellerie Seguin Moreau, Merpins, France
³ENSCBP, Bordeaux INP, 33600, Pessac, France

Contact the author

Keywords

non-targeted analysis, GCxGC-TOFMS, oak wood, toasting process, volatile compounds

Tags

IVAS 2022 | IVES Conference Series

Citation

Related articles…

Elicitors application in two maturation stages of Vitis vinifera L. cv Monastrell: changes on the skin cell walls

AIM: In a recent study, it was determined that the mid-ripening period is the most suitable for the application of methyl jasmonate (MeJ), benzothiadiazole BTH and MeJ+BTH on Monastrell grapes, to favor maximum accumulation of phenolic compounds at the time of harvest. However, the increase in the anthocyanin content of

LC-HRMS data analysis of natural polymer homologue series Application on wine neutral oligosaccharides

Although oligosaccharides have much impact both on health (prevention of diabetes, cardiovascular disease), and on the perception of wine (sweetness, astringency, acidity or bitterness), information on their composition in wine is still limited.

NEW METHOD FOR THE QUANTIFICATION OF CONDENSED TANNINS AND OTHER WINE PHENOLIC COMPOUNDS USING THE AUTOMATED BIOSYSTEMS SPICA ANALIZER

Wine phenolic compounds are important secondary metabolites in enology due to their antioxidant and nutraceutical properties, and their role in the development of color, taste, and protection of wine from oxidation and spoilage. Tannins are valuable phenolic compounds that contribute significantly to these wine properties, especially in mouthfeel characteristics; however, tannin determination remains a significant challenge, with manual and time-consuming methods or complex methodologies. The purpose of this study is to propose a novel method for quantifying condensed tannins in finished wine products.

REGAVID a decision tool to deficit irrigation in a temperate climate (DO Monterrei – Spain)

In temperate climates, such as in the North of Spain, the use of irrigation in the vineyard has not been required, due to the usual rainfall from June to August. In some large vineyards, irrigation management has been carried out, based on occasional support irrigation, or for the application of nutrients (fertigation). Currently it is necessary to implement decision support models to manage irrigation water in real time and avoid misuse of a scarce resource. Moreover, quality standards must be achieved, as in the previous rainfed viticulture.

ENRICHMENT OF THE OENOLOGICAL MALDI-TOF/MS PROTEIN SPECTRA DATABASE FOR RELIABLE OENOLOGICAL YEAST AND BACTERIA IDENTIFICATION

The Matrix Assisted Laser Desorption/Ionization–Time-Of-Flight Mass Spectrometry (MALDI-TOF MS) technology is commonly used in food and medical sector to identify yeast or bacteria species isolated from a nutritive culture media. Since a decade, brewery and oenology industries have been attracted to this method which combines fast analysis times, reliability and low cost of analysis. Briefly, this method is based on the comparison of the MALDI-TOF/MS protein spectra of an isolated colony of yeast or bacteria with those contain in a manufacturer’s reference protein spectra database. Initiated in 2015, the creation of the first oenological mass spectra database has proved to be essential for increase quality of species identification.