Terroir 1996 banner
IVES 9 IVES Conference Series 9 Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Abstract

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen fertilization on vine growth, yield and berry constitution (KLIEWER, 1971; BELL et al., 1979; DELAS et al., 1991; SPAYD et al., 1993; SPAYD et al., 1994). Other papers deal with the depressive effect of cover crop on vine nitrogen supply, which can partly explain the quality-improving effect of this technique (SOYER et al., 1996).
Vine nitrogen uptake is likely to vary to a considerable extend with soil parameters, even when no nitrogen fertilization or cover crop occurs. Figuring among those parameters are: soil organic matter content, C/N ratio of soil organic matter and soil organic matter turnover. The latter depends mainly on soil temperature, soil aeration, soil pH and soil moisture content. Despite considerable empirical evidence, almost no literature is available on vine nitrogen status as a function of soil characteristics and the impact of this status on vine development, berry constitution and wine quality. This might be explained by the lack of accuracy of currently available indicators of vine nitrogen status, such as petiole or leaf blade nitrogen content, or their lack of accessibility, as is true for cane arginine content. In this paper we discuss the use of several forms of nitrogen in grape juice (must) as indicators of vine nitrogen status. The accuracy of these indicators provides the means to differentiate nitrogen offer by the soil in “terroir” studies and assess its impact on berry quality potential.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Cornelis VAN LEEUWEN (1, 2), Philippe FRIANT (1), Enzo RONCO (3), Cyril JOURDAN (2), Jean-Pierre SOYER (4), Christian MOLOT (4) and Xavier CHONE (2)

(1) ENITA de Bordeaux, 1 Crs du Général de Gaulle, F 33175 Gradignan Cedex
(2) Faculté d’OEnologie, 351 Cours de la Libération, F 33405 Talence Cedex
(3) Faculta’ di Farmacia, Universita’ degli studi di Torino, Italia
(4) INRA Agronomie, Domaine de la Grande Ferrade, F 33140 Villenave d’Ornon

Contact the author

Tags

Terroir 2000

Citation

Related articles…

Effects of soil and climate on wine style in Stellenbosch: Sauvignon blanc

Une étude a été menée pendant neuf ans sur deux vignes non-irriguées de Sauvignon blanc commercialisés, plantées à différentes localités (A et B) dans le district de Stellenbosch. Deux parcelles expérimentales, situées sur deux formations géologiques différentes, ont été identifiées au sein de chaque vignoble. A chaque localité une des

For a phenomenology of terroir. A consumers’ perspective

This study investigates the notion of terroir by applying a phenomenological approach, focusing on the subjective experience of consumers. We will consider how terroir is described by consumers in order to gauge their subjective viewpoint and understand their way of describing and defining this spatiality.

Above and below: soil moisture and soil temperature interact to alter grapevine water relations

The combined effect of soil moisture and soil temperature on grapevine physiology is gaining interest in the context of global warming.

isUP-AgrO European project – unlocking the potential for agricultural research on an EU outmost region: boosting ISOPlexis center

The isUP-AgrO project aims to enhance the capability of ISOPlexis – Centre of Sustainable Agriculture and Food Technology, a research unit from the University of Madeira, an outermost region of Portugal.

Automated detection of downy mildew in vineyards using explainable deep learning

Traditional methods for identifying downy mildew in commercial vineyards are often labour-intensive, subjective, and time-consuming.