Terroir 1996 banner
IVES 9 IVES Conference Series 9 Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Abstract

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen fertilization on vine growth, yield and berry constitution (KLIEWER, 1971; BELL et al., 1979; DELAS et al., 1991; SPAYD et al., 1993; SPAYD et al., 1994). Other papers deal with the depressive effect of cover crop on vine nitrogen supply, which can partly explain the quality-improving effect of this technique (SOYER et al., 1996).
Vine nitrogen uptake is likely to vary to a considerable extend with soil parameters, even when no nitrogen fertilization or cover crop occurs. Figuring among those parameters are: soil organic matter content, C/N ratio of soil organic matter and soil organic matter turnover. The latter depends mainly on soil temperature, soil aeration, soil pH and soil moisture content. Despite considerable empirical evidence, almost no literature is available on vine nitrogen status as a function of soil characteristics and the impact of this status on vine development, berry constitution and wine quality. This might be explained by the lack of accuracy of currently available indicators of vine nitrogen status, such as petiole or leaf blade nitrogen content, or their lack of accessibility, as is true for cane arginine content. In this paper we discuss the use of several forms of nitrogen in grape juice (must) as indicators of vine nitrogen status. The accuracy of these indicators provides the means to differentiate nitrogen offer by the soil in “terroir” studies and assess its impact on berry quality potential.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Cornelis VAN LEEUWEN (1, 2), Philippe FRIANT (1), Enzo RONCO (3), Cyril JOURDAN (2), Jean-Pierre SOYER (4), Christian MOLOT (4) and Xavier CHONE (2)

(1) ENITA de Bordeaux, 1 Crs du Général de Gaulle, F 33175 Gradignan Cedex
(2) Faculté d’OEnologie, 351 Cours de la Libération, F 33405 Talence Cedex
(3) Faculta’ di Farmacia, Universita’ degli studi di Torino, Italia
(4) INRA Agronomie, Domaine de la Grande Ferrade, F 33140 Villenave d’Ornon

Contact the author

Tags

Terroir 2000

Citation

Related articles…

Fertility assessment in Vitis vinifera L., cv. Alvarinho

The Portuguese wine production is characterized by wide yield fluctuations, causing considerable implications in the economic performance of this sector. The possibility of predicting the yield in advance is crucial as it enables preliminary planning and management of the available resources. The present work aims to study and evaluate two different techniques for the assessment of vine fertility. vineyards.

Effect of kaolin foliar application on grape cultivar Assyrtiko (Vitis vinifera L.) under vineyard conditions

In the context of climate change and for the sustainable exploitation of Mediterranean vineyards, it is necessary to use new strategies to adapt to the new climatic conditions.

Influence of protective colloids on tartrate stability, polysaccharide contents and volatile compound profile of a white wine

The tartaric salts precipitation is one of the main issues regarding wine instability 1. In addition to the well-known and deeply studied phenomena of potassium hydrogentartrate precipitation (KHT), the last decade has been increased the phenomena of calcium tartrate (CaT) precipitation, that is a concern for the wine industry 2.

Evaluation of aroma characteristics in Vitis amurensis grapes across different regions by using HS-SPME-GC/MS

Background: Aroma compounds are important secondary metabolite in grapes and play important roles in the flavor and quality of grape berries and their wines. Vitis amurensis grape belongs to the East Asian Vitis spp., with excellent cold and disease resistance, and exhibits strong brewing potential. However, it has not been effectively utilized and there is no systematic research on the aroma compounds of V. amurensis grapes.
Methods: To provide sufficient experimental evidence for the characteristic aroma of V. amurensis grape, HS-SPME-GC/MS was used to identify the aroma compounds of five V. amurensis (‘Beiguohong’, ‘Beiguolan’, ‘Shuangfeng’, ‘Shuanghong’, ‘Shuangyou’) and three interspecific hybrids (‘Beibinghong’, ‘Xuelanhong’, ‘Zuoyouhong’) grapes in Zuojia and Ji’an. The grape berries were collected at harvest in 2020, 2021 and 2022.

Carbon isotope discrimination in berry juice sugars: changes in response to soil water deficits across a range of vitis vinifera cultivars

In wine producing regions around the world, climate change has the potential to decrease the frequency and amount of precipitation and increase average and extreme temperatures. This will lower soil water availability and increase evaporative demand, thereby increasing the frequency and intensity of water deficit experienced in vineyards. Among other things, grapevines manage water deficit by regulating stomatal closure. The dynamics of this regulation, however, have not been well characterized across the range of Vitis vinifera cultivars. Providing a method to understand how different cultivars regulate their stomata, and hence water use in response to changes in soil water deficits will help growers manage vineyards and select plant material to better meet quality and yield objectives in a changing climate.