Terroir 1996 banner
IVES 9 IVES Conference Series 9 Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Abstract

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen fertilization on vine growth, yield and berry constitution (KLIEWER, 1971; BELL et al., 1979; DELAS et al., 1991; SPAYD et al., 1993; SPAYD et al., 1994). Other papers deal with the depressive effect of cover crop on vine nitrogen supply, which can partly explain the quality-improving effect of this technique (SOYER et al., 1996).
Vine nitrogen uptake is likely to vary to a considerable extend with soil parameters, even when no nitrogen fertilization or cover crop occurs. Figuring among those parameters are: soil organic matter content, C/N ratio of soil organic matter and soil organic matter turnover. The latter depends mainly on soil temperature, soil aeration, soil pH and soil moisture content. Despite considerable empirical evidence, almost no literature is available on vine nitrogen status as a function of soil characteristics and the impact of this status on vine development, berry constitution and wine quality. This might be explained by the lack of accuracy of currently available indicators of vine nitrogen status, such as petiole or leaf blade nitrogen content, or their lack of accessibility, as is true for cane arginine content. In this paper we discuss the use of several forms of nitrogen in grape juice (must) as indicators of vine nitrogen status. The accuracy of these indicators provides the means to differentiate nitrogen offer by the soil in “terroir” studies and assess its impact on berry quality potential.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Cornelis VAN LEEUWEN (1, 2), Philippe FRIANT (1), Enzo RONCO (3), Cyril JOURDAN (2), Jean-Pierre SOYER (4), Christian MOLOT (4) and Xavier CHONE (2)

(1) ENITA de Bordeaux, 1 Crs du Général de Gaulle, F 33175 Gradignan Cedex
(2) Faculté d’OEnologie, 351 Cours de la Libération, F 33405 Talence Cedex
(3) Faculta’ di Farmacia, Universita’ degli studi di Torino, Italia
(4) INRA Agronomie, Domaine de la Grande Ferrade, F 33140 Villenave d’Ornon

Contact the author

Tags

Terroir 2000

Citation

Related articles…

Optimization of the acquisition of NIR spectrum in grape must and wine 

The characterization of chemical compounds related with quality of grape must and wine is relevant for the viticulture and enology fields. Analytical methods used for these analyses require expensive instrumentation as well as a long sample preparation processes and the use of chemical solvents. On the other hand, near-infrared (NIR) spectroscopy technique is a simple, fast and non-destructive method for the detection of chemical composition showing a fingerprint of the sample. It has been reported the potential of NIR spectroscopy to measure some enological parameters such as alcohol content, pH, organic acids, glycerol, reducing sugars and phenolic compounds.

Comparison between non-Saccharomyces yeasts for the production of Nero d’Avola wine

Wine production with non-Saccharomyces yeasts is getting larger application due to the positive impact of these yeasts on wine composition. Previous studies showed notably differences in chemical composition of Merlot wines obtained with Torulaspora delbrueckii.

Tasting soils in Pinot noir wines of the Willamette valley, Oregon

The conventional wisdom of vintners is that alkalinity, and thus less sour and more rounded taste, are enhanced in wine and grapes challenged by low-nutrient soils.

Measures to promote biodiversity in viticulture—how do socio-economic factors influence implementation?

Context and purpose. In Germany, vineyards are typically intensively managed monocultural systems shaped by low structural variability.