Terroir 1996 banner
IVES 9 IVES Conference Series 9 Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Tools for assessing vine nitrogen status; role of nitrogen uptake in the “terroir” effect

Abstract

Among the numerous nutrients vines extract from the soil, nitrogen is the one that interferes most with vine vigor, yield, berry constitution and wine quality. Many studies relate on the influence of various levels of nitrogen fertilization on vine growth, yield and berry constitution (KLIEWER, 1971; BELL et al., 1979; DELAS et al., 1991; SPAYD et al., 1993; SPAYD et al., 1994). Other papers deal with the depressive effect of cover crop on vine nitrogen supply, which can partly explain the quality-improving effect of this technique (SOYER et al., 1996).
Vine nitrogen uptake is likely to vary to a considerable extend with soil parameters, even when no nitrogen fertilization or cover crop occurs. Figuring among those parameters are: soil organic matter content, C/N ratio of soil organic matter and soil organic matter turnover. The latter depends mainly on soil temperature, soil aeration, soil pH and soil moisture content. Despite considerable empirical evidence, almost no literature is available on vine nitrogen status as a function of soil characteristics and the impact of this status on vine development, berry constitution and wine quality. This might be explained by the lack of accuracy of currently available indicators of vine nitrogen status, such as petiole or leaf blade nitrogen content, or their lack of accessibility, as is true for cane arginine content. In this paper we discuss the use of several forms of nitrogen in grape juice (must) as indicators of vine nitrogen status. The accuracy of these indicators provides the means to differentiate nitrogen offer by the soil in “terroir” studies and assess its impact on berry quality potential.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

Cornelis VAN LEEUWEN (1, 2), Philippe FRIANT (1), Enzo RONCO (3), Cyril JOURDAN (2), Jean-Pierre SOYER (4), Christian MOLOT (4) and Xavier CHONE (2)

(1) ENITA de Bordeaux, 1 Crs du Général de Gaulle, F 33175 Gradignan Cedex
(2) Faculté d’OEnologie, 351 Cours de la Libération, F 33405 Talence Cedex
(3) Faculta’ di Farmacia, Universita’ degli studi di Torino, Italia
(4) INRA Agronomie, Domaine de la Grande Ferrade, F 33140 Villenave d’Ornon

Contact the author

Tags

Terroir 2000

Citation

Related articles…

Actual challenges and the need to produce alternative products from red grapes rich in phenols and antioxidants

The global consumption of wine has undergone significant changes after several years of covid-19, which was the beginning of a global crisis of the current century. This pushed some people to start looking for comfort and security as they felt that the world around them was losing these benefits. In most cases, this has led to them to idea of rethinking their lives in an attempt to live better or continuing to stay true to their habits and lifestyles despite the pressure of changes. Alcohol in any form is a part of these reactions, leading to increased consumption in the early stages of a crisis, particularly in relation to anxiety.

Stabulation (lees stirring) in must as a method for aroma intensification: A comparison with skin contact and a classical version of Traminer and Sauvignon blanc in Austria

In the course of this study, stabilisation (lees stirring in unclarified must) with skin contact and classic white wine vinification were compared for the Sauvignon blanc and Traminer varieties in Austria. The test wines were analysed for the volatile substances esters, free monoterpenes and fruity thiols

The vineyard of the future: producing more with less  

similar to other agricultural producers, grape growers face increasing pressure to improve productivity and production efficiency while reducing their environmental impact. Threats due to extreme climate events, as well as the uncertainty of available water and labor, provide significant challenges to the future of grape production. This presentation will provide an integrated overview of the tools and technologies being developed to address these issues and to help growers manage vineyards in the future, including vineyard design, remote and proximal sensing, automation, data management and decision support systems, and germplsm improvement. The potential impact of these advancements on vineyard productivity, fruit quality, and sustainability will be discussed.

Early development of potential wine styles for PIWI varieties in grapevine breeding

In a framework in which climate change is increasingly recognized as a critical global challenge, traditional viticulture must be reconsidered in order to provide better solutions for future needs [1].

Impact of canopy management on thiol precursors in white grapes: a six-year field study

The mechanisms behind thiol precursor accumulation in grapes remain incompletely understood, nor are the ways in which they can be improved by agronomic practices. A six-year field trial studied the physiological response of the Swiss white cultivar Vitis vinifera Arvine, rich in varietal thiols and precursors, to canopy management, i.e. leaf removal and canopy height.. Five treatments were set up in a randomized block design to assess the impacts of 1) pre-flowering LR (i.e. pre-flowering or full-flowering stages) and 2) compensating for the leaf area removed in the cluster zone by increasing the trimming height (i.e. 100 or 150 cm canopy height), compared with a non-defoliated control treatment.
Intensive pre-flowering LR severely reduced yield potential (–47% on average) and reduced the concentration of 3-mercaptohexanol precursors (P-3MH) in the must (–21%; p-value < 0.10).