Terroir 1996 banner
IVES 9 IVES Conference Series 9 Cultivation forms and viticulture models adapting to adverse “environmental” conditions

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

Abstract

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season. This problem came out as a consequence of active agricultural population decrease provocated mainly by its transition in other, more profitable activities, more likely tourism. Therefore, the aim of this article is to offer organisational-technological solutions in viticultural production, needing less human labour, especially during summer months, without influencing the economic-financial aspect of this production. Authors give proposals in order to relieve this problem.

Two solutions are considered as basical:
1. using the adeguate cultivation models, respectively establishment of a model suitable for a mechanisation of working operations;
2. choice of late ripening grape cultivars, respectively those to ripen after a summer tourist season.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

G. Cargnello (1), Đ. Peröuric (2), M. Oplanic (2)

(1) Sezione di Tecniche Colturali I​stituto Sperimentale per la Viticoltura Conegliano (TV) (ITALY)
(2) Institute for Agriculture and Tourism Porec (CROATIA)

Contact the authors

Keywords

Active agricultural population, cultivation forms, viticulture models, cultivars of grape, environmental conditions, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Radiation-associated effects on regulated deficit irrigation management in grapevine cv. Cabernet Sauvignon

The main challenge of regulated deficit irrigation (RDI) research is to isolate the factors that come with RDI, the direct effect of plant water status from the indirect ones like increased radiation and temperature changes on the cluster zone. This study aims to isolate the effects of vine water status from the effects of increased radiation on the phenolic composition of grapes subjected to RDI.
A three-year study on an RDI experiment where radiation was controlled was implemented in a commercial vineyard of Cabernet Sauvignon in Chile. Four RDI treatments based on partial evapotranspiration (ET) irrigation were established. Irrigation treatments were 100% ET, 70% ET, 50-100% ET (50% ET before veraison and 100% ET afterward), and 35-100% ET (35% ET before veraison and 100% ET afterward).

δ13C : A still underused indicator in precision viticulture  

The first demonstration of the interest of carbon isotope composition of sugars in grapevine, as an integrated indicator of vineyard water status, dates back to 2000 (Gaudillère et al., 1999; Van Leeuwen et al., 2001). Thanks to the isotopic discrimination of Carbon that takes place during plant photosynthesis, under hydric stress conditions, it is possible to accurately estimate the photosynthetic activity. Ever since, δ13C has been widely applied with success to zonation, terroir studies and vine physiology research, but is still not widely used by viticulturists. This is quite astonishing by considering the impact of global warming on viticulture and the need to improve water management, that would justify a widespread use of δ13C.
The lack of private laboratories proposing the analysis, the cost of the technology, as well as the long analytical delays, have been detrimental to its development. Some laboratories tried to overcome the analytical difficulties of isotopic analysis by using fourier transformed infrared spectroscopy, as a fast and cheap alternative to the official OIV method (IRMS). These claimed FTIR models have never been published or peer reviewed and cannot be considered robust. In this work, thanks to the recent acquisition of IRMS technology, new modern and robust applications of δ13C for viticulture are proposed. This includes the use of the analysis to make parcel separations at harvesting, the possibility to increase the precision of hydric stress cartography and the potential cost reduction when compared with Scholander pressure bomb analysis.

In vitro regeneration of grapevine cv. Aglianico via somatic embryogenesis: preliminary studies for next genome editing applications  

Italy is a rich hub of viticultural biodiversity harboring hundreds of indigenous grape varieties that have adapted over centuries to the diverse climatic and geographic conditions of its regions. Preserving this biodiversity is essential for maintaining a diversified genetic pool, crucial for addressing future challenges such as climate change and emerging plant diseases. Rising temperatures, precipitation pattern variations, and extreme weather events can affect grape ripening, crop quality, and contribute to disease development. Integrated disease management necessitates exploration of novel strategies. Biotechnologies emerge as a significant player in tackling modern viticulture challenges.

Transforming winemaking waste: grape pomace as a sustainable source of bioactive compounds

Grapevines (Vitis vinifera L.) are plants of great economic importance, with over 80% of grape production dedicated to wine production, yielding more than 258 million hectoliters annually [1].

Cover crops sown in the inter-rows shape the weed communities in three vineyards across Italy

The use of cover crops (CCs) is widely proposed as an alternative to traditional soil management in vineyards to exploit a wide range of ecosystem services. The presence of a CC in the inter-row space is known to control spontaneous vegetation in vineyards, primarily through the biomass of the sown crop, which competes with other spontaneous species for soil resources.