Terroir 1996 banner
IVES 9 IVES Conference Series 9 Cultivation forms and viticulture models adapting to adverse “environmental” conditions

Cultivation forms and viticulture models adapting to adverse “environmental” conditions

Abstract

One of the main problems in viticultural production in Istria (Croatia) is a labour shortage in periods of intensive works, mainly during summer, respectively during tourist season. This problem came out as a consequence of active agricultural population decrease provocated mainly by its transition in other, more profitable activities, more likely tourism. Therefore, the aim of this article is to offer organisational-technological solutions in viticultural production, needing less human labour, especially during summer months, without influencing the economic-financial aspect of this production. Authors give proposals in order to relieve this problem.

Two solutions are considered as basical:
1. using the adeguate cultivation models, respectively establishment of a model suitable for a mechanisation of working operations;
2. choice of late ripening grape cultivars, respectively those to ripen after a summer tourist season.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

G. Cargnello (1), Đ. Peröuric (2), M. Oplanic (2)

(1) Sezione di Tecniche Colturali I​stituto Sperimentale per la Viticoltura Conegliano (TV) (ITALY)
(2) Institute for Agriculture and Tourism Porec (CROATIA)

Contact the authors

Keywords

Active agricultural population, cultivation forms, viticulture models, cultivars of grape, environmental conditions, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Biodiversity and biocontrol ability of Trichoderma natural populations in soil vineyards from Castilla y León region (Spain)

Trichoderma is a microorganism present in many agricultural soils and some of its species could be used as natural biological control agents. In this work, the presence of natural populations of Trichoderma was estimated in soil vineyard and its biocontrol capacity against Phaeoacremonium minimum, one of the main agent causals of grapevine trunk diseases instead of using pesticides. Moreover, physicochemical variables in soil such as pH, organic matter and nutrients were evaluated to determine a possible correlation to natural populations of Trichoderma.

The effect of viticultural treatment on grape juice chemical composition

Viticultural management regimes influence the soil elemental profile of a vineyard, determining the microbial community distribution, insect life, and plant biochemistry and physiology

Fruit set rate clonal variation explains yield differences at harvest in Malbec

Malbec is Argentina’s flagship variety, and it is internationally recognized for producing high-quality red wines. Fruit set rate is a major component in grapevine yield determination, and it is the outcome of multiple genetic and environmental interacting variables. Here, we characterized the reproductive performance of 25 Malbec clones grown under homogeneous conditions in a 23-years old experimental plot. We measured traits near flowering (like the number of flowers per inflorescence) and at harvest (including the number of berries per cluster and berry weight), during two consecutive seasons (2022 and 2023).

Anthocyanins Chemistry During Red Wine Ageing

Anthocyanins are the main pigments present in young red wines, being responsible for their intense red color. These pigment in aqueous solutions occur in different forms in equilibrium that are dependent on the pH

Optimizing protocol for a rapid and cost effective DNA isolation for Marker Assisted Selection pipeline

Grapevine is a plant that holds significant socioeconomic importance due to its production of grapes for fresh consumption, wines, and juices. However, climate changes and susceptibility to diseases pose a threat to the quality and yield of these products. The breeding of new genotypes that are resistant/tolerant to biotic and abiotic stresses is essential to overcome the impact of climate changes. In this regard, Marker-assisted selection (MAS), which uses DNA markers, is a crucial tool in breeding programs. The efficiency and economy of this method depend on finding rapid DNA isolation methods.