Terroir 1996 banner
IVES 9 IVES Conference Series 9 Environmental protection by means of (“Great”) vitiviniculture zonation

Environmental protection by means of (“Great”) vitiviniculture zonation

Abstract

In the paper is discussed the first example of environmental protection, agreed in a wide-term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake, following a methodology of “Great zonation” (Cargnello G. 1998). For vitiviniculture zonation of this area we started from social and economic considerations, to come later on technical, as for example those related to “terroir”. This not only because in this area, aspects of human and animal water supply and protection were fundamental, but also because this operation model is predicted in “Great zonation”. Therefore, as always should be done, zonation descended primarily from social and economic aspects. This set out allowed to emphasise that for example some soils and microclimates not particularly suitable for wine growing according to standards expressed through “pedology” and “climatology”, if considered from the economic and social level can results particularly propitious for wine growing and vice versa. In the present paper are shown results related to environmental protection through zonation (“Great zonation”) in an relevant area in Istria from social and economic point of view. Location and valorisation of vitivinicultural “terroir” should by every mean, in our opinion, descend from and harmonise with social and economic aspects, and thus with “Great” regulatory plan, agricultural, viticultural and vitivinicultural.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A. Milotic (1), M. Oplanic (1), G. Cargnello (2), Đ. Peröuric (1)

(1) Institute for Agriculture and Tourism – Poreč (CROATIA)
(2) Sezione di Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Conegliano (TV) (ITALY)

Keywords

Environmental protection, great vitiviniculture zonation, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Crafting wine’s signature: exploring volatile compounds from terroir to aging

The unique characteristics of terroir play a fundamental role in shaping the identity and quality of wines, influencing the aromatic complexity of young wines and their long-term aging potential. The volatile compounds responsible for these aromas are crucial to identifying and appreciating a given wine.

Hyperspectral imaging and machine learning for monitoring grapevine physiology

Rootstocks are gaining importance in viticulture as a strategy to combat abiotic challenges, as well as enhancing scion physiology and attributes. Therefore, understanding how the rootstock affects photosynthesis is insightful for genetic improvement of either genotype in the grafted grapevines. Photosynthetic parameters such as maximum rate of carboxylation of RuBP (Vcmax) and the maximum rate of electron transport driving RuBP regeneration (Jmax) have been identified as ideal targets for breeding and genetic studies. However, techniques used to directly measure these photosynthetic parameters are limited to the single leaf level and are time-consuming measurements.

Influence Of Different Grape Polysaccharides On Phenolic Compounds And Colour Characteristics Of Tempranillo Red Wines

Polysaccharides (PS) are one of the main compounds found in wines, and they come mainly from the grape cell walls or from the yeasts, and they play an important role in the technological and sensory characteristics of wines. Polysaccharides obtained from yeasts have been more studied, especially mannoproteins, since there are commercial products.

Could intermittent shading, as produced in agrivoltaics, mitigate global warming effects on grapevine?

Global warning increases evaporative demand and accelerates grapevine phenology. As a consequence, the ripening phase shifts to warmer and drier periods. This results in lower acidity and higher sugar levels in berries, yielding too alcoholic wines with altered organoleptic properties. Agrivoltaics, which combines crop and renewable energy production on the same land using photovoltaic panels, emerged as a promising innovation to counteract these impacts by partially shading the plants.

Application of satellite-derived vegetation indices for frost damage detection in grapevines

Wine grape production is increasingly vulnerable to freeze damage due to warming climates, milder winters, and unpredictable late spring frosts. Traditional methods for assessing frost damage in grapevines which combine fieldwork and meteorological data, are expensive, time-consuming, and labor-intensive. Remote sensing could offer a rapid, inexpensive way to detect frost damage at a regional scale. Remote sensing approaches were used to assess freeze damage in grapevines by evaluating satellite-derived vegetation indices (VIs) to understand the severity and spatial distribution of damage in several New York vineyards immediately after a frost event (May 17th-18th, 2023). PlanetScope 3m satellite images acquired before and after the freeze were used to map damage and measure changes in VIs for vineyards in the Finger Lakes region.