Terroir 1996 banner
IVES 9 IVES Conference Series 9 Environmental protection by means of (“Great”) vitiviniculture zonation

Environmental protection by means of (“Great”) vitiviniculture zonation

Abstract

In the paper is discussed the first example of environmental protection, agreed in a wide-term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake, following a methodology of “Great zonation” (Cargnello G. 1998). For vitiviniculture zonation of this area we started from social and economic considerations, to come later on technical, as for example those related to “terroir”. This not only because in this area, aspects of human and animal water supply and protection were fundamental, but also because this operation model is predicted in “Great zonation”. Therefore, as always should be done, zonation descended primarily from social and economic aspects. This set out allowed to emphasise that for example some soils and microclimates not particularly suitable for wine growing according to standards expressed through “pedology” and “climatology”, if considered from the economic and social level can results particularly propitious for wine growing and vice versa. In the present paper are shown results related to environmental protection through zonation (“Great zonation”) in an relevant area in Istria from social and economic point of view. Location and valorisation of vitivinicultural “terroir” should by every mean, in our opinion, descend from and harmonise with social and economic aspects, and thus with “Great” regulatory plan, agricultural, viticultural and vitivinicultural.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A. Milotic (1), M. Oplanic (1), G. Cargnello (2), Đ. Peröuric (1)

(1) Institute for Agriculture and Tourism – Poreč (CROATIA)
(2) Sezione di Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Conegliano (TV) (ITALY)

Keywords

Environmental protection, great vitiviniculture zonation, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Sustainability and resilience in the wine sector

Resilience and sustainability are two fundamental concepts in the sustainable development of the wine sector, being closely interconnected.

Statewide relationships between water potentials, gas exchange and δ13c of grape musts in California. Implications for use in precision viticulture

The measurement of carbon isotopic discrimination of musts (δ13C) at harvest is an integrated assessment of water status during ripening of grapevine. It is an alternative to traditional measurements of water status in the field, which is crucial for understanding spatial variability of plant physiology at the vineyard scale, proven useful for delineation of management zones in precision viticulture. The aim of this work was to attune the method for the first time to California conditions across a range of areas and cultivars with different hydric behavior, and to evaluate its efficiency in delineating management zones for selective harvest in commercial vineyards.

Fructose implication in the Sotolon formation in fortified wines: preliminary results

Sotolon (3-hydroxy-4,5-dimethyl-2(5H)-furanone) is a naturally occurring odorant compound with a strong caramel/spice-like scent, present in many foodstuffs. Its positive contribution for the aroma of different fortified wines such as Madeira, Port and Sherry is recognized. In contrast, it is also known to be responsible for the off-flavor character of prematurely aged dry white wines. The formation mechanisms of sotolon in wine are still not well elucidated, particularly in Madeira wines, which are submitted to thermal processing during its traditional ageing. The sotolon formation in these wines has been related to sugar degradation mechanisms, particularly from fructose [1].

Influence of processing parameters on aroma profile of conventional and ecological Cabernet-Sauvignon red wine during concentration by reverse osmosis

Wine aroma represents one of the most important quality parameter and it is influenced by various factors (viticulture and vinification techniques, climate or storage conditions etc.). Wines produced from conventionally and ecologically grown grapes of same variety have different chemical composition and aroma profile [1]. Aroma profile of wine can be also influenced by additional treatment of wine, such as concentration of wine by reverse osmosis (RO). Reverse osmosis represents a pressure-driven membrane separation technique that separates the initial wine on the retentate or concentrate that is retained on the membrane, and permeate that passes through it [2]. Wine permeate usually containes water, ethanol, acetic acid and several low molecular weight compounds that can pass through the membrane. This property enables the use of reverse osmosis membranes for wine concentration, partial dealcoholization, acetic acid or aroma correction [3,4].

How much does the soil, climate and viticultural practices contribute to the variability of the terroir expression?

When considering the application of a systemic approach to assess the intrinsic complexity of agricultural production, the following question immediately arises