Terroir 1996 banner
IVES 9 IVES Conference Series 9 Environmental protection by means of (“Great”) vitiviniculture zonation

Environmental protection by means of (“Great”) vitiviniculture zonation

Abstract

In the paper is discussed the first example of environmental protection, agreed in a wide-term sense, by means of vitiviniculture zonations performed in Istria (Croatia) in the area of Butoniga lake, following a methodology of “Great zonation” (Cargnello G. 1998). For vitiviniculture zonation of this area we started from social and economic considerations, to come later on technical, as for example those related to “terroir”. This not only because in this area, aspects of human and animal water supply and protection were fundamental, but also because this operation model is predicted in “Great zonation”. Therefore, as always should be done, zonation descended primarily from social and economic aspects. This set out allowed to emphasise that for example some soils and microclimates not particularly suitable for wine growing according to standards expressed through “pedology” and “climatology”, if considered from the economic and social level can results particularly propitious for wine growing and vice versa. In the present paper are shown results related to environmental protection through zonation (“Great zonation”) in an relevant area in Istria from social and economic point of view. Location and valorisation of vitivinicultural “terroir” should by every mean, in our opinion, descend from and harmonise with social and economic aspects, and thus with “Great” regulatory plan, agricultural, viticultural and vitivinicultural.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

A. Milotic (1), M. Oplanic (1), G. Cargnello (2), Đ. Peröuric (1)

(1) Institute for Agriculture and Tourism – Poreč (CROATIA)
(2) Sezione di Tecniche Colturali – Istituto Sperimentale per la Viticoltura – Conegliano (TV) (ITALY)

Keywords

Environmental protection, great vitiviniculture zonation, Istria, Croatia

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Reduction of the height of the canopy in fruit set and in pea size: vegetative, productive and maturation effects, in cv. Verdejo

Global warming is accelerating the technological ripening of the grape, with a loss of acidity, which requires that vineyard management can delay ripening to avoid it. The source-sink relation is essential for grape ripening, since it affects the distribution of photosynthates and substances derived from plant metabolism. A work is proposed to know the response of the vineyard to the drastic reduction of the foliar surface by trim down the shoots in cv.

Study of cross-modal interactions through sensory and chemical characteristics of italian red wines

This work aimed at investigating red wine olfactory–oral cross-modal interactions, and at testing their impact on the correlations between sensory and chemical variables. Seventy-four Italian red whole wines (WWs) from 10 varieties, and corresponding deodorized wines (DWs), were evaluated by sensory descriptive assessment.

Grapevine vigour is correlated with N-mineralization potential of soil from selected cool climate vineyards in Victoria, Australia

Excess vigour has been a problem on fertile soils under high rainfall in many cool climate regions of Australia. High and low vigour blocks were selected in vineyards of the cool climate regions of King Valley, Yarra Valley and Mornington Peninsula, Victoria.

Regionality in Australian Shiraz: Sensory profiles of wines from six regions and their associations with chemical, geographical and climatic elements

Aim: Regional characters relating to Shiraz in Australia are not well documented. This study aimed to characterize the sensory, chemical and climate profiles of wines from various Australian Shiraz producing regions. 

Comparing different vineyard sampling densities and patterns for spatial interpolation of intrinsic water use efficiency

The need to rationalize agricultural inputs has recently increased interest in assessing vineyard variability in order to implement variable rate input applications, so-called ‘precision viticulture’. In many viticultural areas globally, precision viticulture is already widely used such as for selective harvesting and variable rate application (VRA) of inputs such as irrigation and/or fertilizer. Robust VRA relies on having a geostatistically accurate map (of one or more vineyard attributes) requiring high sampling densities, which can be cost- and time-prohibitive to obtain. Previous work on spatial interpolation using kriging have upscaled ground-based measurements, but such upscaling strategies are applicable only when vineyard conditions are spatially continuous and satisfies the assumption of second-order stationary processes. Alternatively, mixed models that combine kriging and auxiliary information, such as the regression kriging (RK) method, are more instructive for spatial predictions. In order to improve prediction accuracies, it is therefore necessary to incorporate additional information to achieve accurate spatial patterns with low error.