Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Abstract

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences du vin Barolo en relation avec le terroir, dans la perspective d’arriver à l’identification de sous-zones à l’intérieur de la zone de production du Barolo A.O.C .. La description de la méthodologie utilisée se trouve dans les acts du symposium de Siena 1998. L’expérience fait partie du Programme de recherche Viticolture-Oenologie mis en oeuvre par le Ministère Politiques Agricoles et la Région Piémont.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

M. Soster (1), A. Cellino (1), F. Spanna (1), R. Salandin (2), M. Piazzi (2), I. Boni (2), F. Mannini (3),
N. Argamante (3), A. Schubert (4), C. Lovisolo (4), M. Ubigli (5), V. Gerbi (6), G. Zeppa (6), L. Rolle (6), M. Gily (7)

(1) Regione Piemonte, Assessorato Agricoltura – Corso Stati Uniti,21 – 10128 – TORINO
(2) Istituto per le Piante da Legno e l’Ambiente, Corso Casale 476 – 10132 TORINO
(3) Centro Miglioramento genetico e Biologia della Vite del CNR, Via Leonardo da Vinci,44 – 10095 – GRUGLIASCO (TO)
(4) Dipartimento Colture Arboree – Università di Torino, Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(5) Istituto Sperimentale per l’Enologia – MIPAF, Via Pietro Micca, 35 – 14100 ASTI
(6) Dipartimento Valorizzazione delle Produzioni e Risorse Agroforestali- Università di Torino, Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(7) Associazione produttori Vignaioli Piemontesi, Via Alba, 15 – 12051 CASTAGNITO (CN)

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Oenological compatibility of biocontrol yeasts applied to wine grapes 

Antagonistic yeasts applied to wine grapes must be compatible with the thereafter winemaking process, avoiding competition with the fermentative Saccharomyces cerevisiae or affecting wine flavour. Therefore, fifteen epiphytic yeasts (6 Metschnikowia sp., 6 Hanseniaspora uvarum, 3 Starmerella bacillaris) previously selected for its biocontrol ability against Alternaria on wine grapes were evaluate for possible competition with S. cerevisiae by the Niche Overlap Index (NOI) employing YNB agar media with 10 mM of 17 different carbonate sources present in wine grapes (proline, asparagine, alanine, glutamic acid, tirosine, arginine, lisine, methionine, glicine, malic acid, tartaric acid, fructose, melibiose, raffinose, rhamnose, sucrose, glucose).

Balearic varieties of grapevine: study of genetic variability in the response to water stress

The photosynthetic characteristics of twenty varieties of grapevine (Vitis vinifera L.) from Mallorca (Balearic Islands, Spain) and two widespread varieties

Wine microbial diversity and cross-over applications: emerging results and future perspectives

AIM: Cross-over applications are an emerging technological approach in food microbiology where a microorganism from one traditional specific fermentation process is used to improve quality and safety in another agri-food production/chain (Dank et al., 2021). A complex microbial diversity is found in association with fermentation in wine, including Saccharomyces, non-Saccharomyces and malolactic bacteria,  all microorganisms versatile in terms of enological utilisation (Tempère et al., 2018). Here, we propose a systematic literature review highlighting the existing trends and possible future applications related to cross-over exploitation of wine-related microbiota. 

MICROFLUIDIC PLATFORM FOR SORTING YEAST CELLS ACCORDING TO THEIR MORPHOLOGY

In this work we briefly present a microfluidic device aiming to sort yeast cells according to their morphology. The technology is based upon microfluidic chips made out of Polydimethylsiloxane and glass using soft lithography processes and replica molding. The microfluidic device was used for encapsulating single yeast cells in liquid droplets containing growth medium. Liquid droplet containing yeast cells were sorted using a real time imaging and decision-making process.

Drought affects vineyard soil microbiome: approach to select micro-organisms adapted to drought

Climate transition with frequent heat waves and long drought periods threatens grapevine productivity and wine quality in the Mediterranean regions. Microorganisms are known to contribute to plant fitness and to stimulate plant resilience against biotic and abiotic factors.
In this work, it was assessed the impact of long-term drought on soil microbiome associated to grapevine in open field in Alentejo, renowned Portuguese wine region.
Soil and plant tissues of drought tolerant Syrah cultivar exposed to three irrigation levels (100%- FI, 50%-DI ETc; rain-fed–NI) for 5 years were sampled for two years (2022-2023). Metabarcoding analysis of soil bacteria (16S V4 rRNA) and fungi (ITS sub-region) were integrated with soil physiochemical properties and leaves´ physiological data. Pre-dawn leaf water potential and stomatal conductance confirmed the imposed drought scenarios. Even though, α- and β-diversity of prokaryotic and eukaryotic microbial communities differed more by season than water availability, samples clustered according to soil water content and pH (p<0.05). Fungal communities show higher differences in the structure across treatments than bacteria. In 2023, 16 bacterial against 61 fungal ASVs were significatively different in abundance between NI and FI. Beijerinckiaceae, Bradyrhizobiaceae (Alphaproteobacteria) and Nocardioidaceae, Streptomycetaceae (Actinobacteria) families resulted to be significatively more abundant in NI, while Ascomycota, Basidyomicota and Mortierellomycota are the most important fungal phyla in NI. With culturomics data, this study aims to gather insights into how soil microbiome is remodelled under drought and contribute to select bacterial and fungal taxa with potential to mitigate drought stress in vineyards.