Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Abstract

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences du vin Barolo en relation avec le terroir, dans la perspective d’arriver à l’identification de sous-zones à l’intérieur de la zone de production du Barolo A.O.C .. La description de la méthodologie utilisée se trouve dans les acts du symposium de Siena 1998. L’expérience fait partie du Programme de recherche Viticolture-Oenologie mis en oeuvre par le Ministère Politiques Agricoles et la Région Piémont.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

M. Soster (1), A. Cellino (1), F. Spanna (1), R. Salandin (2), M. Piazzi (2), I. Boni (2), F. Mannini (3),
N. Argamante (3), A. Schubert (4), C. Lovisolo (4), M. Ubigli (5), V. Gerbi (6), G. Zeppa (6), L. Rolle (6), M. Gily (7)

(1) Regione Piemonte, Assessorato Agricoltura – Corso Stati Uniti,21 – 10128 – TORINO
(2) Istituto per le Piante da Legno e l’Ambiente, Corso Casale 476 – 10132 TORINO
(3) Centro Miglioramento genetico e Biologia della Vite del CNR, Via Leonardo da Vinci,44 – 10095 – GRUGLIASCO (TO)
(4) Dipartimento Colture Arboree – Università di Torino, Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(5) Istituto Sperimentale per l’Enologia – MIPAF, Via Pietro Micca, 35 – 14100 ASTI
(6) Dipartimento Valorizzazione delle Produzioni e Risorse Agroforestali- Università di Torino, Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(7) Associazione produttori Vignaioli Piemontesi, Via Alba, 15 – 12051 CASTAGNITO (CN)

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Evaluating South African Chenin blanc wine styles using an LC-MS screening method

Sorting Chenin blanc is one of the most important white wine cultivars in South Africa. It has received a lot of attention and accolades in the past years and more research than ever is dedicated to this versatile cultivar. According to the Chenin blanc association of South Africa, there are three recognized dry wine styles, Fresh and Fruity (FF), Rich and Ripe Unwooded
(RRU), and Rich and Ripe Wooded (RRW). They are traditionally established with the aid of expert sensory evaluation, but the cost and the (subjective) human factor are aspects to be taken into account. A more objective and possibly robust way of assessing and attributing these styles can be the use of chemical analysis.

Considerations about the concept of “terroir”: definition and research direction

On exposera la distinction et la relation entre: “Etude des milieux”, “Zonage Petit ou Zonage Technique ou Sub Zonage”, “Grand Zonage”, “Délimitation des zones productives” ex.

Discriminant value of soil properties for terroir zoning

Environmental analysis (climate, vegetation, geomorfoloy-lanscape, lithology and soil) and its integration in a quality index taking the Appellation of Origin as the sole universe are used as general methodology for terroir zoning in Spain (Sotés and Gómez-Miguel, 1986-2005). This methodology is also applied to specific aspects of different Spanish Appellations of Origin (size, distribution and landscape peculiarities and vine occupation index).

Uve e vini in vulcaniti basiche anorogeniche dei lessini meridionali, impronta petrochimica e assimilazione di metalli pesanti

Nel 2009 sono stati prelevati e analizzati mediante XRF (X-ray fluorescence) campioni di suolo, in vigneti sperimentali siti nelle province di Vicenza e di Ancona. Sono stati inoltre determinati in 2 campioni di mosto e 2 di vino delle varietà Verdicchio e Refosco dal peduncolo rosso, ed in 2 di uva Refosco dal peduncolo rosso, gli elementi in traccia mediante ICP-MS (Inductively coupled plasma-mass spectrometry).

Influence of grapevine rootstock/scion combination on rhizosphere and root endophytic microbiomes

Soil is a reservoir of microorganisms playing important roles in biogeochemical cycles and interacting with plants whether in the rhizosphere or in the root endosphere. The composition of the microbial communities thus impacts the plant health. Rhizodeposits (such as sugar, organic and amino acids, secondary metabolites, dead root cells …) are released by the roots and influence the communities of rhizospheric microorganisms, acting as signaling compounds or carbon sources for microbes. The composition of root exudates varies depending on several factors including genotypes. As most of the cultivated grapevines worldwide are grafted plants, the aim of this study was to explore the influence of rootstock and scion genotypes on the microbial communities of the rhizosphere and the root endosphere. The work was conducted in the GreffAdapt plot (55 rootstocks x 5 scions), in which the 275 combinations have been planted into 3 blocks designed according to the soil resistivity. Samples of roots and rhizosphere of 10 scion x rootstock combinations were first collected in May among the blocks 2 and 3. The quantities of bacteria, fungi and archaea have been assessed in the rhizosphere by quantitative PCR, and by cultivable methods for bacteria and fungi. The communities of bacteria, fungi and arbuscular mycorrhizal fungi (AMF) was analyzed by Illumina sequencing of 16S rRNA gene, ITS and 28S rRNA gene, respectively. The level of mycorrhization was also evaluated using black ink coloration of newly formed roots harvested in October. The level of bacteria, fungi and archaea was dependent on rootstock and scion genotypes. A block effect was observed, suggesting that the soil characteristics strongly influenced the microorganisms from the rhizosphere and root endosphere. High-throughput sequencing of the different target genes showed different communities of bacteria, fungi and AMF associated with the scion x rootstock combinations. Finally, all the combinations were naturally mycorrhized. The root mycorrhization intensity was influenced by the rootstock genotype, but not by the scion one. Altogether, these results suggest that both rootstock and scion genotypes influence the rhizosphere and root endophytic microbiomes. It would be interesting to analyze the biochemical composition of the rhizodeposition of these genotypes for a better understanding of the processes involved in the modulation of these microbiomes. Moreover, crossing our data with the plant agronomic characteristics could provide insights into their roles on plant fitness.