Terroir 1996 banner
IVES 9 IVES Conference Series 9 Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Caractérisation des productions vitivinicoles des terroirs du Barolo (Piemonte, Italie)

Abstract

Le projet “Caractérisation des productions vitivinicoles du Barolo” est né par la volonté de la Région Piémont de créer une équipe multidisciplinaire de recherche pour l’individuation des différences du vin Barolo en relation avec le terroir, dans la perspective d’arriver à l’identification de sous-zones à l’intérieur de la zone de production du Barolo A.O.C .. La description de la méthodologie utilisée se trouve dans les acts du symposium de Siena 1998. L’expérience fait partie du Programme de recherche Viticolture-Oenologie mis en oeuvre par le Ministère Politiques Agricoles et la Région Piémont.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000

Type: Article

Authors

M. Soster (1), A. Cellino (1), F. Spanna (1), R. Salandin (2), M. Piazzi (2), I. Boni (2), F. Mannini (3),
N. Argamante (3), A. Schubert (4), C. Lovisolo (4), M. Ubigli (5), V. Gerbi (6), G. Zeppa (6), L. Rolle (6), M. Gily (7)

(1) Regione Piemonte, Assessorato Agricoltura – Corso Stati Uniti,21 – 10128 – TORINO
(2) Istituto per le Piante da Legno e l’Ambiente, Corso Casale 476 – 10132 TORINO
(3) Centro Miglioramento genetico e Biologia della Vite del CNR, Via Leonardo da Vinci,44 – 10095 – GRUGLIASCO (TO)
(4) Dipartimento Colture Arboree – Università di Torino, Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(5) Istituto Sperimentale per l’Enologia – MIPAF, Via Pietro Micca, 35 – 14100 ASTI
(6) Dipartimento Valorizzazione delle Produzioni e Risorse Agroforestali- Università di Torino, Via Leonardo da Vinci, 44 – 10095 GRUGLIASCO (TO)
(7) Associazione produttori Vignaioli Piemontesi, Via Alba, 15 – 12051 CASTAGNITO (CN)

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Chemical activation of ABA signaling in grapevine through ABA receptor agonists

Grapevine (Vitis vinifera) and its derived products, in terms of cultivated area and economic volume, constitute the most relevant fruit crop in the world (7.5 million cultivated hectares). In the current context of climate change, the wine sector faces unprecedented challenges to satisfy a growing demand for wines of greater quality through sustainable viticulture. Global warming threatens quality wine production in Mediterranean wine regions in particular. The increase in heatwaves and drought episodes accelerate the vine phenology and alter the ripening and composition of grapes and wine. Extreme abiotic stress episodes compromise grape production and plant survival, intensifying the pressure on the use of limited resources like water. Abscisic acid (ABA) is an important hormone in the ripening of certain fruits and in plant response to abiotic stress.

A multivariate approach using attenuated total reflectance mid-infrared spectroscopy to measure the surface mannoproteins and β-glucans of yeast cell walls during wine fermentations

Yeast cells possess a cell wall comprising primarily glycoproteins, mannans, and glucan polymers. Several yeast phenotypes relevant for fermentation, wine processing, and wine quality are correlated with cell wall properties. To investigate the effect of wine fermentation on cell wall composition, a study was performed using mid-infrared (MIR) spectroscopy coupled with multivariate methods (i.e., PCA and OPLS-DA). A total of 40 yeast strains were evaluated, including Saccharomyces strains (laboratory and industrial) and non-Saccharomyces species. Cells were fermented in both synthetic MS300 and Chardonnay grape must to stationery phase, processed, and scanned in the MIR spectrum.

Differences in the chemical composition and “fruity” aromas of Auxerrois sparkling wines from the use of cane and beet sugar during wine production.

The main objective of this study was to establish if beet sugar produces a different concentration of “fruity” volatile aroma compounds (VOCs), compared to cane sugar when used for second alcoholic fermentation of Auxerrois sparkling wines. Auxerrois base wine from the 2020 vintage was separated into two lots; half was fermented with cane sugar and half with beet sugar (both sucrose products and tested for sugar purity). These sugars were used in yeast acclimation (IOC 2007), and base wines for the second fermentation (12 bottles each). Base wines were manually bottled at the Cool Climate Oenology and Viticulture Institute (CCOVI) research winery. The standard chemical analysis took place at intervals of 0, 4 weeks, and 8 weeks post-bottling. Acidity and pH measurements were carried out by an auto-titrator. Residual Sugar (g/L) (glucose (g/L), fructose (g/L)), YAN (mg N/L), malic acid, and acetic acid (g/L) were analyzed by Megazyme assay kits. parameters were analyzed by Megazyme assay kits. Alcohol (% v/v) was assessed by GC-FID. VOC analysis of base wines, finished sparkling wines, as well as the two sugars in model sparkling wine solutions, was carried out by GC-MS. VOCs included ethyl octanoate, ethyl hexanoate, ethyl butanoate, ethyl decanoate, ethyl-2-methylbutyrate, ethyl-3-methylbutyrate, ethyl 2-methyl propanoate, ethyl 2- hydroxy propanoate, 1-hexanol, 2-phenylethan-1-ol, ethyl acetate, hexyl acetate, isoamyl acetate and 2-phenylethyl acetate.

Blend wines made of Syrah, Marselan and Tannat, had better color and more phenolic diversity than varietal wines

Background: Elaborating red-wines from grape cultivars with different polyphenolic profiles could improve wine color and its phenolic-dependent characteristics

OENOLOGICAL STRATEGIES FOR THE REMOVAL OF PINKING IN WHITE WINE

The pinking of in white wine is the turning of color from yellow to salmon hue. White wines obtained from certain grape varieties (e.g. Chardonnay, Sauvignon blanc, Riesling, Trebbiano di Lugana) showed to be susceptible to pinking [1] that has been evaluated by an assay providing the addition of hydrogen peroxide. Even if its appearance does not seem to affect the sensory properties [2], strategies are necessary for its removal. Nowadays, the treatment with polyvinylpolipirroline (PVPP) was reported to significantly decrease the pink color [3].