Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

Abstract

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”. The project was activated by means of pubblic funds (Mi.P.A.F. and Emilia-Romagna Region funds) and thanks to the coordinating activity of the Experimental Institute for Viticulture of Conegliano (TV), the Experimental Institute for Oenology of Asti and the Centro Ricerche Produzioni Vegetali (CRPV) of Faenza (RA), that involved also other local and national Institutions to carry out the research.
The work concerned the “zoning” of the typical production area of the v.q.p.r.d. wine “Colli Piacentini Gutturnio”, that results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of Piacenza (Emilia-Romagna region) and, particularly, in three river valleys: Val Tidone (zone A), Val Nure (zone B) and Val d’Arda (zone C).
The examination of the environmental characteristics (soil, climate) and of the vine-growing aspects led to the identification of ten homogeneous sub-zones (5 in A, 2 in B and 3 in C), from which samples of Gutturnio wine of the “vendemmia” 1998 have been taken. The aim was to define the sensorial characteristics of the same wine obtained in different zones with their own climate and kind of soil.
The wines were taken from different winery, so they included the variability due to the different environment in which the grapevines were grown, but also a certain variability due to non-uniform tecnologies in wine-making.
The wines were submitted to chemical, sensorial and instrumental (by “Electronic Nose”) analisys.
The “Electronic nose” system is an instrumental apparatus able to produce, simulating the Mammalia sense of smell, electric signals that are quantified; then the data are submitted to multicomponent analysis. So the “Electronic Nose” can allow the recognition, distinguition and classification of wine odours.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

Antonio Venturi (1), Lorena Castellari (2), Mario Ubigli (3), Antonella Bosso (3), Guaita Massimo (3), Albino Libè (4), Corrado Di Natale (5), Antonella Macagnano (5), Eugenio Martinelli (5), Alessandro Mantini (5), Arnaldo D’Amico (5)

(1) C.R.P.V. – Filiera Vitivinicola, Via Tebano, 54 – 48018 Faenza (RA)
(2) C.A.T.E.V. S.r.l., Via Tebano, 45 – 48018 Faenza (RA)
(3) Istituto Sperimentale per l’Enologia, Via P. Micca, 35 – 14100 Asti
(4) Provincia di Piacenza, Dipartimento «Politiche di gestione del territorio e tutela dell’ambiente» – Monitoraggio delle risorse territoriali ed ambientali – loc. Gariga – 29027 Podenzano (PC)
(5) Università di Roma, Tor Vergata – Gruppo Sensori e Microsistemi ​Via di Tor Vergata n. 110 -​00133 Roma

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Influence of different environments on grape phenolic and aromatic composition of threeclone of ‘nebbiolo’ (Vitis Vinifera L.)

The interaction between cultivar and growing environment is the base of wine quality and typicality. In recent time the behaviour of different clones within the same cultivar became another fundamental factor influencing the enological result. In order to clarify cultivar/clone/environment relations, a trial was carried out in 2008 studying the performances of three clones of ‘Nebbiolo’, grown in different environments: south-east Piedmont (hilly and characterized by a loamy and alkaline soil) and north-east Piedmont (a plain area characterized by a sandy and acidic soil).

Vertical temperature gradient in the canopy provides opportunities to adapt training system in a climate change context

Aims: The aims of this study were (1) to measure the vertical temperature gradient in the vine canopy in parcels with different vineyard floor management practices and (2) to analyze the factors influencing this gradient. The objective was to investigate whether the increase of trunk height could be an adaptation strategy to reduce air temperature in the bunch zone in a context of climate change. 

Experimental vinification of withered grapes of Vitis vinifera “Muscat of Alexandria”

The objective of the present work is to investigate wine produced from dehydrated grapes and vinified according to classical Roman manuals.

METHODS – Locally produced Muscat of Alexandria’s grapes were used for the sweet wine production, grown in the experimental vineyard of Instituto Superior de Agronomia (Lisbon, Portugal). The grapes were harvested manually slightly over-ripe and subjected to greenhouse drying. After 7-10 days dried grapes were transported to an experimental winery for various operations (e.g., grape weighing, sorting, crushing/destemming). Several maceration protocols were used comprising the addition of saltwater and white wine to whole bunches or destemmed grapes. Fermentation was conducted with the addition of commercial yeast. The standard physico-chemical parameters of wines were determined according to the OIV standards.

Free amino acid composition of must from 7 Vitis vinifera L. cv. in Latium (Italy)

Free amino acid concentrations in must of 7 Vitis vinifera cultivars (Cabernet Franc, Syrah, Merlot, Montepulciano, Sangiovese, Cesanese d’Affile, Carmenere) grown in the Latium region (Italy) were monitored from 2003 to 2005. The cultivars were located in a homogeneous soil and climatic zone and with the same training system (Cordon Spur).

The taste of color: how grape anthocyanin fractions affect in-mouth perceptions

Anthocyanins are responsible for the red wine color and their ability to condense with tannins is considered as a contributor in astringency reduction. However, recent studies showed the possibility of anthocyanins to influence directly the in-mouth perception of wines.