Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

Abstract

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”. The project was activated by means of pubblic funds (Mi.P.A.F. and Emilia-Romagna Region funds) and thanks to the coordinating activity of the Experimental Institute for Viticulture of Conegliano (TV), the Experimental Institute for Oenology of Asti and the Centro Ricerche Produzioni Vegetali (CRPV) of Faenza (RA), that involved also other local and national Institutions to carry out the research.
The work concerned the “zoning” of the typical production area of the v.q.p.r.d. wine “Colli Piacentini Gutturnio”, that results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of Piacenza (Emilia-Romagna region) and, particularly, in three river valleys: Val Tidone (zone A), Val Nure (zone B) and Val d’Arda (zone C).
The examination of the environmental characteristics (soil, climate) and of the vine-growing aspects led to the identification of ten homogeneous sub-zones (5 in A, 2 in B and 3 in C), from which samples of Gutturnio wine of the “vendemmia” 1998 have been taken. The aim was to define the sensorial characteristics of the same wine obtained in different zones with their own climate and kind of soil.
The wines were taken from different winery, so they included the variability due to the different environment in which the grapevines were grown, but also a certain variability due to non-uniform tecnologies in wine-making.
The wines were submitted to chemical, sensorial and instrumental (by “Electronic Nose”) analisys.
The “Electronic nose” system is an instrumental apparatus able to produce, simulating the Mammalia sense of smell, electric signals that are quantified; then the data are submitted to multicomponent analysis. So the “Electronic Nose” can allow the recognition, distinguition and classification of wine odours.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

Antonio Venturi (1), Lorena Castellari (2), Mario Ubigli (3), Antonella Bosso (3), Guaita Massimo (3), Albino Libè (4), Corrado Di Natale (5), Antonella Macagnano (5), Eugenio Martinelli (5), Alessandro Mantini (5), Arnaldo D’Amico (5)

(1) C.R.P.V. – Filiera Vitivinicola, Via Tebano, 54 – 48018 Faenza (RA)
(2) C.A.T.E.V. S.r.l., Via Tebano, 45 – 48018 Faenza (RA)
(3) Istituto Sperimentale per l’Enologia, Via P. Micca, 35 – 14100 Asti
(4) Provincia di Piacenza, Dipartimento «Politiche di gestione del territorio e tutela dell’ambiente» – Monitoraggio delle risorse territoriali ed ambientali – loc. Gariga – 29027 Podenzano (PC)
(5) Università di Roma, Tor Vergata – Gruppo Sensori e Microsistemi ​Via di Tor Vergata n. 110 -​00133 Roma

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Exploring induced mutagenesis as a tool for grapevine intra-varietal improvement: increased diversity in ripening periods and bunch traits with climate resilience potential

The wine industry currently relies on a limited number of grapevine cultivars, comprised of numerous clones with slight differences in their viticultural, oenological, or stress-tolerance traits.

Analysis of climate spatio-temporal variability in the Conegliano-Valdobbiadene DOCG wine district

Local climate characterization is fundamental in terroir description, yet global change perspectives raise questions about its feasibility, since temporal stability cannot be no more assumed for the forthcoming years.

Development of bioprospecting tools for oenological applications

Wine is the result of a complex biochemical process. From a microbiological point of view, the grape berry is characterised by a heterogeneous microbiota composed of different microorganisms (yeasts, bacteria and filamentous fungi) which will play a predominant role in the quality of the final product. At this level, yeasts play a predominant role in the chemistry of wine, as they

A new approach for sensory characterization of grape. Relationship with chemical composition

Characterize taste and mouthfeel properties of grapes elicited by the phenolic fraction (PF) of grape berries and establish relationships with chemical variables. METHODS: As many as 31 diverse grape lots of Tempranillo Tinto and Garnacha Tinta from three different regions were harvested. Grapes were destemmed and macerated in 15% of ethanol for one week and extracts were submitted to solid phase extraction. The recovered polyphenolic fraction was reconstituted in wine model and characterized by a panel of 21 wine experts employing a list of 23 taste and mouthfeel-related attributes following a rate-k-attributes methodology. RESULTS: Six significant attributes among the 31 samples differed based on ANOVA results: “dry”, “coarse”, “bitter”, “dry on tongue”, “sticky” and “watery”. PCA with VARIMAX algorithm was calculated.

The representation of the vines: from symbol to spectacle

Landscapes such as its representation express values, beliefs and intentions of the individuals and the communities that produce them.