Terroir 1996 banner
IVES 9 IVES Conference Series 9 Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

Characterization of the DOC wine “Colli Piacentini Gutturnio” obtained in three traditional areas

Abstract

The poster presents the results of the 3rd year of activity of the project “Characterization of the wine productions of the italian regions. The DOC wine Colli Piacentini Gutturnio”. The project was activated by means of pubblic funds (Mi.P.A.F. and Emilia-Romagna Region funds) and thanks to the coordinating activity of the Experimental Institute for Viticulture of Conegliano (TV), the Experimental Institute for Oenology of Asti and the Centro Ricerche Produzioni Vegetali (CRPV) of Faenza (RA), that involved also other local and national Institutions to carry out the research.
The work concerned the “zoning” of the typical production area of the v.q.p.r.d. wine “Colli Piacentini Gutturnio”, that results from the vinification of Barbera (55-70%) and Bonarda (30-40%) cultivars, grown in the hilly area of Piacenza (Emilia-Romagna region) and, particularly, in three river valleys: Val Tidone (zone A), Val Nure (zone B) and Val d’Arda (zone C).
The examination of the environmental characteristics (soil, climate) and of the vine-growing aspects led to the identification of ten homogeneous sub-zones (5 in A, 2 in B and 3 in C), from which samples of Gutturnio wine of the “vendemmia” 1998 have been taken. The aim was to define the sensorial characteristics of the same wine obtained in different zones with their own climate and kind of soil.
The wines were taken from different winery, so they included the variability due to the different environment in which the grapevines were grown, but also a certain variability due to non-uniform tecnologies in wine-making.
The wines were submitted to chemical, sensorial and instrumental (by “Electronic Nose”) analisys.
The “Electronic nose” system is an instrumental apparatus able to produce, simulating the Mammalia sense of smell, electric signals that are quantified; then the data are submitted to multicomponent analysis. So the “Electronic Nose” can allow the recognition, distinguition and classification of wine odours.

DOI:

Publication date: February 24, 2022

Issue: Terroir 2000 

Type: Article

Authors

Antonio Venturi (1), Lorena Castellari (2), Mario Ubigli (3), Antonella Bosso (3), Guaita Massimo (3), Albino Libè (4), Corrado Di Natale (5), Antonella Macagnano (5), Eugenio Martinelli (5), Alessandro Mantini (5), Arnaldo D’Amico (5)

(1) C.R.P.V. – Filiera Vitivinicola, Via Tebano, 54 – 48018 Faenza (RA)
(2) C.A.T.E.V. S.r.l., Via Tebano, 45 – 48018 Faenza (RA)
(3) Istituto Sperimentale per l’Enologia, Via P. Micca, 35 – 14100 Asti
(4) Provincia di Piacenza, Dipartimento «Politiche di gestione del territorio e tutela dell’ambiente» – Monitoraggio delle risorse territoriali ed ambientali – loc. Gariga – 29027 Podenzano (PC)
(5) Università di Roma, Tor Vergata – Gruppo Sensori e Microsistemi ​Via di Tor Vergata n. 110 -​00133 Roma

Tags

IVES Conference Series | Terroir 2000

Citation

Related articles…

Oenococcus oeni clonal diversity in the carbonic maceration winemaking

This essay was aimed to describe the clonal diversity of Oenococcus oeni in the malolactic fermentation of the carbonic maceration (CM) winemaking. The free and the pressed liquids from CM were sampled and compared to the wine from a standard winemaking with previous destemming and crushing (DC) of grapes [1]. O. oeni strain typification was performed by PFGE as González-Arenzana et al. described (2014) [2]. Results showed that 13 genotypes, referred as to letters, were distinguished from the 49 isolated strains, meaning the genotype “a” the 27%, the “b” the 14%, the “c” the 12%, the “d and e” the 10 % each other, and the remaining ones less than the 8% each one.

Proteomic profiling of grape berry presenting early loss of mesocarp cell vitality

From fruit set to ripening, the grape berry mesocarp experiences a wide range of dynamic physical, physiological, and biochemical changes, such as mesocarp cell death (MCD) and hydraulic isolation. The premature occurrence of such events is a characteristic of the Niagara Rosada (NR) variety, utilised as table grapes and winemaking. In our opinion, the onset of ripening would not cause MCD, but a down-regulation of respiratory enzymes during the early loss of cell viability, while maintaining membrane integrity. For this, we investigated three distinct developmental stages (green (E-L33), veraison (E-L35), and ripe (E-L39)) of NR berries by label-free proteomics, enzymatic respiratory activity and outer mesocarp imaging. Cell wall-modifying proteins were found to accumulate differently throughout ripening, while cytoplasmic membranes continue intact.

Insights from selected ion flow tube mass spectrometry (SIFT-MS) and chemometrics applied to the quick discrimination of grapevine varieties

Selected Ion Flow Tube Mass Spectrometry (SIFT-MS) is an innovative analytical method based on soft chemical ionization to analyze thecomposition in volatile compounds of a gas phase

Grape development revisited through the single-berry metabolomic clock paradigm

Although the ripening process of grapevine berries is well-documented at the vineyard level, pinpointing distinct developmental stages remains challenging. The asynchronous development of berries results in dynamic biases and metabolic chimerism. It is thus crucial to consider individual berries separately and resynchronize their internal clock for deciphering physiological changes throughout development. Given the importance of grape composition in wine quality, we aimed at measuring developmental changes in the metabolome of Syrah single berries from anthesis to over-ripening, without a priori preconceived.

ReGenWine: A transdisciplinary project to assess concepts in regenerative viticulture

Regenerative agriculture is a set of agricultural practices that focus on improving the health of the soil, increasing biodiversity, and enhancing ecosystem services.